M. Oshiki, Emi Morimoto, Kanae Kobayashi, H. Satoh, Satoshi Okabe
{"title":"Collaborative metabolisms of urea and cyanate degradation in marine anammox bacterial culture","authors":"M. Oshiki, Emi Morimoto, Kanae Kobayashi, H. Satoh, Satoshi Okabe","doi":"10.1093/ismeco/ycad007","DOIUrl":null,"url":null,"abstract":"\n Anammox process greatly contributes to nitrogen loss occurring in oceanic oxygen minimum zones (OMZs), where the availability of NH4+ is scarce as compared with NO2-. Remineralization of organic nitrogen compounds including urea and cyanate (OCN-) into NH4+ has been believed as an NH4+ source of the anammox process in OMZs. However, urea- or OCN-- dependent anammox has not been well examined due to the lack of marine anammox bacterial culture. In the present study, urea and OCN- degradation in a marine anammox bacterial consortium were investigated based on 15N-tracer experiments and metagenomic analysis. Although a marine anammox bacterium, Candidatus Scalindua sp., itself was incapable of urea and OCN- degradation, urea was anoxically decomposed to NH4+ by the coexisting ureolytic bacteria (Rhizobiaceae, Nitrosomonadaceae, and/or Thalassopiraceae bacteria), whereas OCN- was abiotically degraded to NH4+. The produced NH4+ was subsequently utilized in the anammox process. The activity of the urea degradation increased under microaerobic condition (ca. 32 – 42 μM dissolved O2, DO), and the contribution of the anammox process to the total nitrogen loss also increased up to 33.3% at 32 μM DO. Urea-dependent anammox activities were further examined in a fluid thioglycolate media with a vertical gradient of O2 concentration, and the active collaborative metabolism of the urea degradation and anammox was detected at the lower oxycline (21 μM DO).","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"89 21","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycad007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Anammox process greatly contributes to nitrogen loss occurring in oceanic oxygen minimum zones (OMZs), where the availability of NH4+ is scarce as compared with NO2-. Remineralization of organic nitrogen compounds including urea and cyanate (OCN-) into NH4+ has been believed as an NH4+ source of the anammox process in OMZs. However, urea- or OCN-- dependent anammox has not been well examined due to the lack of marine anammox bacterial culture. In the present study, urea and OCN- degradation in a marine anammox bacterial consortium were investigated based on 15N-tracer experiments and metagenomic analysis. Although a marine anammox bacterium, Candidatus Scalindua sp., itself was incapable of urea and OCN- degradation, urea was anoxically decomposed to NH4+ by the coexisting ureolytic bacteria (Rhizobiaceae, Nitrosomonadaceae, and/or Thalassopiraceae bacteria), whereas OCN- was abiotically degraded to NH4+. The produced NH4+ was subsequently utilized in the anammox process. The activity of the urea degradation increased under microaerobic condition (ca. 32 – 42 μM dissolved O2, DO), and the contribution of the anammox process to the total nitrogen loss also increased up to 33.3% at 32 μM DO. Urea-dependent anammox activities were further examined in a fluid thioglycolate media with a vertical gradient of O2 concentration, and the active collaborative metabolism of the urea degradation and anammox was detected at the lower oxycline (21 μM DO).