Extremal inverse eigenvalue problem for matrices described by a connected unicyclic graph

Pub Date : 2024-01-10 DOI:10.21136/AM.2024.0084-23
Bijoya Bardhan, Mausumi Sen, Debashish Sharma
{"title":"Extremal inverse eigenvalue problem for matrices described by a connected unicyclic graph","authors":"Bijoya Bardhan,&nbsp;Mausumi Sen,&nbsp;Debashish Sharma","doi":"10.21136/AM.2024.0084-23","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we deal with the construction of symmetric matrix whose corresponding graph is connected and unicyclic using some pre-assigned spectral data. Spectral data for the problem consist of the smallest and the largest eigenvalues of each leading principal submatrices. Inverse eigenvalue problem (IEP) with this set of spectral data is generally known as the extremal IEP. We use a standard scheme of labeling the vertices of the graph, which helps in getting a simple relation between the characteristic polynomials of each leading principal submatrix. Sufficient condition for the existence of the solution is obtained. The proof is constructive, hence provides an algorithmic procedure for finding the required matrix. Furthermore, we provide the condition under which the same problem is solvable when two particular entries of the required matrix satisfy a linear relation.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2024.0084-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we deal with the construction of symmetric matrix whose corresponding graph is connected and unicyclic using some pre-assigned spectral data. Spectral data for the problem consist of the smallest and the largest eigenvalues of each leading principal submatrices. Inverse eigenvalue problem (IEP) with this set of spectral data is generally known as the extremal IEP. We use a standard scheme of labeling the vertices of the graph, which helps in getting a simple relation between the characteristic polynomials of each leading principal submatrix. Sufficient condition for the existence of the solution is obtained. The proof is constructive, hence provides an algorithmic procedure for finding the required matrix. Furthermore, we provide the condition under which the same problem is solvable when two particular entries of the required matrix satisfy a linear relation.

分享
查看原文
连通单环图描述矩阵的极值逆特征值问题
在本文中,我们利用一些预先分配的光谱数据来构建对称矩阵,其对应的图是连通的单环图。该问题的谱数据包括每个主次矩阵的最小和最大特征值。使用这组频谱数据的逆特征值问题(IEP)一般称为极值 IEP。我们使用标准的图顶点标注方案,这有助于获得每个前导主次矩阵的特征多项式之间的简单关系。我们得到了解存在的充分条件。该证明是建设性的,因此提供了找到所需矩阵的算法程序。此外,我们还提供了当所需矩阵的两个特定项满足线性关系时同一问题可解的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信