Strategies and challenges for constructing and collecting visual corpora from image-based social media platforms

Yuliya Samofalova
{"title":"Strategies and challenges for constructing and collecting visual corpora from image-based social media platforms","authors":"Yuliya Samofalova","doi":"10.24434/j.scoms.2024.01.3881","DOIUrl":null,"url":null,"abstract":"Visual elements play an important role within the multimodal nature of social media (Pearce et al., 2020). A growing body of research has focused on the analysis of still and moving images from different social media platforms from various perspectives of communication and media studies (Hautea, Parks, Takahashi, & Zeng, 2021; Li & Xie, 2020; Veum & Undrum, 2018). Although the aforementioned studies describe visual data collection, their principal focus does not rely on this collection, but on data analysis. Little attention has been paid to the challenges of collecting visual datasets (Highfield & Leaver, 2016). In this paper, I propose a methodological overview of several strategies for collecting large corpora of visual data from image-based social media platforms. Provided with exemplary publications, I review five strategies for collecting visual corpora: hashtag-based, account-based, metadata-based, random sampling, and mixed approach. Lastly, I present a case study with my own mixed approach to the collection of visual data from Instagram. Considering the usage, advantages and limitations of each strategy, the article will contribute to the developing science of social media research. I believe that a literature analysis of visual data collection strategies and a provided case study can help researchers optimize visual data collection from image-based social media.","PeriodicalId":503798,"journal":{"name":"Studies in Communication Sciences","volume":"7 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Communication Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24434/j.scoms.2024.01.3881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visual elements play an important role within the multimodal nature of social media (Pearce et al., 2020). A growing body of research has focused on the analysis of still and moving images from different social media platforms from various perspectives of communication and media studies (Hautea, Parks, Takahashi, & Zeng, 2021; Li & Xie, 2020; Veum & Undrum, 2018). Although the aforementioned studies describe visual data collection, their principal focus does not rely on this collection, but on data analysis. Little attention has been paid to the challenges of collecting visual datasets (Highfield & Leaver, 2016). In this paper, I propose a methodological overview of several strategies for collecting large corpora of visual data from image-based social media platforms. Provided with exemplary publications, I review five strategies for collecting visual corpora: hashtag-based, account-based, metadata-based, random sampling, and mixed approach. Lastly, I present a case study with my own mixed approach to the collection of visual data from Instagram. Considering the usage, advantages and limitations of each strategy, the article will contribute to the developing science of social media research. I believe that a literature analysis of visual data collection strategies and a provided case study can help researchers optimize visual data collection from image-based social media.
从基于图像的社交媒体平台构建和收集视觉语料库的策略与挑战
视觉元素在社交媒体的多模态特性中扮演着重要角色(Pearce et al.)越来越多的研究从传播学和媒体研究的不同角度出发,重点分析了来自不同社交媒体平台的静态和动态图像(Hautea, Parks, Takahashi, & Zeng, 2021; Li & Xie, 2020; Veum & Undrum, 2018)。尽管上述研究描述了可视化数据的收集,但其主要重点并不在于收集,而在于数据分析。人们很少关注收集可视化数据集所面临的挑战(Highfield & Leaver, 2016)。在本文中,我从方法论的角度概述了从基于图像的社交媒体平台收集大型视觉数据集的几种策略。通过示范出版物,我回顾了收集视觉语料库的五种策略:基于标签、基于账户、基于元数据、随机抽样和混合方法。最后,我介绍了自己从 Instagram 收集视觉数据的混合方法案例研究。考虑到每种策略的用法、优势和局限性,文章将为社交媒体研究科学的发展做出贡献。我相信,对可视化数据收集策略的文献分析和提供的案例研究可以帮助研究人员优化从基于图像的社交媒体中收集可视化数据的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信