Weak base drug-induced endolysosome iron dyshomeostasis controls the generation of reactive oxygen species, mitochondrial depolarization, and cytotoxicity

P. Halcrow, Darius N. K. Quansah, Nirmal Kumar, Rebecca L. Solloway, Kayla M. Teigen, Kasumi A. Lee, Braelyn Liang, Jonathan D. Geiger
{"title":"Weak base drug-induced endolysosome iron dyshomeostasis controls the generation of reactive oxygen species, mitochondrial depolarization, and cytotoxicity","authors":"P. Halcrow, Darius N. K. Quansah, Nirmal Kumar, Rebecca L. Solloway, Kayla M. Teigen, Kasumi A. Lee, Braelyn Liang, Jonathan D. Geiger","doi":"10.1515/nipt-2023-0021","DOIUrl":null,"url":null,"abstract":"Abstract Objectives Approximately 75 % of marketed drugs have the physicochemical property of being weak bases. Weak-base drugs with relatively high pKa values enter acidic organelles including endosomes and lysosomes (endolysosomes), reside in and de-acidify endolysosomes, and induce cytotoxicity. Divalent cations within endolysosomes, including iron, are released upon endolysosome de-acidification. Endolysosomes are “master regulators of iron homeostasis”, and neurodegeneration is linked to ferrous iron (Fe2+)-induced reactive oxygen species (ROS) generation via Fenton chemistry. Because endolysosome de-acidification-induced lysosome-stress responses release endolysosome Fe2+, it was crucial to determine the mechanisms by which a functionally and structurally diverse group of weak base drugs including atropine, azithromycin, fluoxetine, metoprolol, and tamoxifen influence endolysosomes and cause cell death. Methods Using U87MG astrocytoma and SH-SY5Y neuroblastoma cells, we conducted concentration-response relationships for 5 weak-base drugs to determine EC50 values. From these curves, we chose pharmacologically and therapeutically relevant concentrations to determine if weak-base drugs induced lysosome-stress responses by de-acidifying endolysosomes, releasing endolysosome Fe2+ in sufficient levels to increase cytosolic and mitochondria Fe2+ and ROS levels and cell death. Results Atropine (anticholinergic), azithromycin (antibiotic), fluoxetine (antidepressant), metoprolol (beta-adrenergic), and tamoxifen (anti-estrogen) at pharmacologically and therapeutically relevant concentrations (1) de-acidified endolysosomes, (2) decreased Fe2+ levels in endolysosomes, (3) increased Fe2+ and ROS levels in cytosol and mitochondria, (4) induced mitochondrial membrane potential depolarization, and (5) increased cell death; effects prevented by the endocytosed iron-chelator deferoxamine. Conclusions Weak-base pharmaceuticals induce lysosome-stress responses that may affect their safety profiles; a better understanding of weak-base drugs on Fe2+ interorganellar signaling may improve pharmacotherapeutics.","PeriodicalId":74278,"journal":{"name":"NeuroImmune pharmacology and therapeutics","volume":"9 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImmune pharmacology and therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nipt-2023-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Objectives Approximately 75 % of marketed drugs have the physicochemical property of being weak bases. Weak-base drugs with relatively high pKa values enter acidic organelles including endosomes and lysosomes (endolysosomes), reside in and de-acidify endolysosomes, and induce cytotoxicity. Divalent cations within endolysosomes, including iron, are released upon endolysosome de-acidification. Endolysosomes are “master regulators of iron homeostasis”, and neurodegeneration is linked to ferrous iron (Fe2+)-induced reactive oxygen species (ROS) generation via Fenton chemistry. Because endolysosome de-acidification-induced lysosome-stress responses release endolysosome Fe2+, it was crucial to determine the mechanisms by which a functionally and structurally diverse group of weak base drugs including atropine, azithromycin, fluoxetine, metoprolol, and tamoxifen influence endolysosomes and cause cell death. Methods Using U87MG astrocytoma and SH-SY5Y neuroblastoma cells, we conducted concentration-response relationships for 5 weak-base drugs to determine EC50 values. From these curves, we chose pharmacologically and therapeutically relevant concentrations to determine if weak-base drugs induced lysosome-stress responses by de-acidifying endolysosomes, releasing endolysosome Fe2+ in sufficient levels to increase cytosolic and mitochondria Fe2+ and ROS levels and cell death. Results Atropine (anticholinergic), azithromycin (antibiotic), fluoxetine (antidepressant), metoprolol (beta-adrenergic), and tamoxifen (anti-estrogen) at pharmacologically and therapeutically relevant concentrations (1) de-acidified endolysosomes, (2) decreased Fe2+ levels in endolysosomes, (3) increased Fe2+ and ROS levels in cytosol and mitochondria, (4) induced mitochondrial membrane potential depolarization, and (5) increased cell death; effects prevented by the endocytosed iron-chelator deferoxamine. Conclusions Weak-base pharmaceuticals induce lysosome-stress responses that may affect their safety profiles; a better understanding of weak-base drugs on Fe2+ interorganellar signaling may improve pharmacotherapeutics.
弱碱药物诱导的溶酶体内铁失衡控制着活性氧的生成、线粒体去极化和细胞毒性
摘要 目的 大约 75% 的上市药物具有弱碱的物理化学特性。pKa值相对较高的弱碱药物可进入酸性细胞器,包括内体和溶酶体(内溶酶体),驻留在内溶酶体并使其脱酸,诱导细胞毒性。内溶酶体脱酸时会释放出内溶酶体中的二价阳离子,包括铁。内溶酶体是 "铁平衡的主调节器",神经变性与亚铁(Fe2+)通过芬顿化学反应诱导活性氧(ROS)生成有关。由于溶酶体内脱酸诱导的溶酶体应激反应会释放溶酶体内Fe2+,因此确定阿托品、阿奇霉素、氟西汀、美托洛尔和他莫昔芬等一组功能和结构各异的弱碱药物影响溶酶体内并导致细胞死亡的机制至关重要。方法 我们利用 U87MG 星形细胞瘤和 SH-SY5Y 神经母细胞瘤细胞,对 5 种弱碱性药物进行了浓度-反应关系分析,以确定 EC50 值。从这些曲线中,我们选择了药理和治疗相关的浓度,以确定弱碱药物是否会通过使内溶酶体脱酸、释放足够水平的内溶酶体Fe2+以增加细胞膜和线粒体的Fe2+和ROS水平以及细胞死亡来诱导溶酶体应激反应。结果 阿托品(抗胆碱能药)、阿奇霉素(抗生素)、氟西汀(抗抑郁药)、美托洛尔(β-肾上腺素能药)和他莫昔芬(抗雌激素药)在药理和治疗相关浓度下(1)使内溶酶体脱酸、(2) 降低内溶酶体中的 Fe2+ 含量,(3) 增加细胞膜和线粒体中的 Fe2+ 和 ROS 含量,(4) 诱导线粒体膜电位去极化,以及 (5) 增加细胞死亡;内吞铁螯合剂去铁胺可阻止这些影响。结论 弱碱药物会诱发溶酶体应激反应,这可能会影响其安全性;更好地了解弱碱药物对 Fe2+ 细胞器间信号转导的影响可能会改善药物治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信