Towards accuracy improvement in solution of inverse kinematic problem in redundant robot: A comparative analysis

Q2 Engineering
H. Z. Khaleel, Amjad J. Humaidi
{"title":"Towards accuracy improvement in solution of inverse kinematic problem in redundant robot: A comparative analysis","authors":"H. Z. Khaleel, Amjad J. Humaidi","doi":"10.1556/1848.2023.00722","DOIUrl":null,"url":null,"abstract":"The redundant manipulators have more DOFs (degree of freedoms) than it requires to perform specified task. The inverse kinematic (IK) of such robots are complex and high nonlinear with multiple solutions and singularities. As such, modern Artificial Intelligence (AI) techniques have been used to address these problems. This study proposed two AI techniques based on Neural Network Genetic Algorithm (NNGA) and Particle Swarm Optimization (PSO) algorithm to solve the inverse kinematics (IK) problem of 3DOF redundant robot arm. Firstly, the forward kinematics for 3 DOF redundant manipulator has been established. Secondly, the proposed schemes based on NNGA and PSO algorithm have been presented and discussed for solving the inverse kinematics of the suggested robot. Thirdly, numerical simulations have been implemented to verify the effectiveness of the proposed methods. Three scenarios based on triangle, circular, and sine-wave trajectories have been used to evaluate the performances of the proposed techniques in terms of accuracy measure. A comparison study in performance has been conducted and the simulated results showed that the PSO algorithm gives 7% improvement compared to NNGA technique for triangle trajectory, while 2% improvement has been achieved by the PSO algorithm for circular and sine-wave trajectories.","PeriodicalId":37508,"journal":{"name":"International Review of Applied Sciences and Engineering","volume":"13 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1848.2023.00722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The redundant manipulators have more DOFs (degree of freedoms) than it requires to perform specified task. The inverse kinematic (IK) of such robots are complex and high nonlinear with multiple solutions and singularities. As such, modern Artificial Intelligence (AI) techniques have been used to address these problems. This study proposed two AI techniques based on Neural Network Genetic Algorithm (NNGA) and Particle Swarm Optimization (PSO) algorithm to solve the inverse kinematics (IK) problem of 3DOF redundant robot arm. Firstly, the forward kinematics for 3 DOF redundant manipulator has been established. Secondly, the proposed schemes based on NNGA and PSO algorithm have been presented and discussed for solving the inverse kinematics of the suggested robot. Thirdly, numerical simulations have been implemented to verify the effectiveness of the proposed methods. Three scenarios based on triangle, circular, and sine-wave trajectories have been used to evaluate the performances of the proposed techniques in terms of accuracy measure. A comparison study in performance has been conducted and the simulated results showed that the PSO algorithm gives 7% improvement compared to NNGA technique for triangle trajectory, while 2% improvement has been achieved by the PSO algorithm for circular and sine-wave trajectories.
提高冗余机器人逆运动学问题求解的精度:比较分析
冗余机械手的 DOF(自由度)比执行指定任务所需的 DOF 更多。这类机器人的逆运动学(IK)非常复杂,具有多解和奇异的高度非线性。因此,现代人工智能(AI)技术已被用于解决这些问题。本研究提出了基于神经网络遗传算法(NNGA)和粒子群优化算法(PSO)的两种人工智能技术来解决 3DOF 冗余机械臂的逆运动学(IK)问题。首先,建立了 3 DOF 冗余机械手的正向运动学。其次,介绍并讨论了基于 NNGA 和 PSO 算法的建议方案,以解决建议机械手的逆运动学问题。第三,通过数值模拟验证了所提方法的有效性。我们使用了基于三角形、圆形和正弦波轨迹的三种情况来评估所提出的技术在精度测量方面的性能。模拟结果表明,在三角形轨迹上,PSO 算法比 NNGA 技术提高了 7%,而在圆形和正弦波轨迹上,PSO 算法提高了 2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Review of Applied Sciences and Engineering
International Review of Applied Sciences and Engineering Materials Science-Materials Science (miscellaneous)
CiteScore
2.30
自引率
0.00%
发文量
27
审稿时长
46 weeks
期刊介绍: International Review of Applied Sciences and Engineering is a peer reviewed journal. It offers a comprehensive range of articles on all aspects of engineering and applied sciences. It provides an international and interdisciplinary platform for the exchange of ideas between engineers, researchers and scholars within the academy and industry. It covers a wide range of application areas including architecture, building services and energetics, civil engineering, electrical engineering and mechatronics, environmental engineering, mechanical engineering, material sciences, applied informatics and management sciences. The aim of the Journal is to provide a location for reporting original research results having international focus with multidisciplinary content. The published papers provide solely new basic information for designers, scholars and developers working in the mentioned fields. The papers reflect the broad categories of interest in: optimisation, simulation, modelling, control techniques, monitoring, and development of new analysis methods, equipment and system conception.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信