Backward doubly stochastic differential equations driven by fractional Brownian motion with stochastic integral-Lipschitz coefficients

IF 0.3 Q4 STATISTICS & PROBABILITY
Assane Ndiaye, Sadibou Aidara, A. B. Sow
{"title":"Backward doubly stochastic differential equations driven by fractional Brownian motion with stochastic integral-Lipschitz coefficients","authors":"Assane Ndiaye, Sadibou Aidara, A. B. Sow","doi":"10.1515/rose-2023-2024","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with a class of backward doubly stochastic differential equations driven by fractional Brownian motion with Hurst parameter H greater than 1 2 {\\frac{1}{2}} . We essentially establish the existence and uniqueness of a solution in the case of stochastic Lipschitz coefficients and stochastic integral-Lipschitz coefficients. The stochastic integral used throughout the paper is the divergence-type integral.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"3 2","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2023-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper deals with a class of backward doubly stochastic differential equations driven by fractional Brownian motion with Hurst parameter H greater than 1 2 {\frac{1}{2}} . We essentially establish the existence and uniqueness of a solution in the case of stochastic Lipschitz coefficients and stochastic integral-Lipschitz coefficients. The stochastic integral used throughout the paper is the divergence-type integral.
由具有随机积分-利普希兹系数的分数布朗运动驱动的后向双随机微分方程
摘要 本文涉及一类由分式布朗运动驱动的后向双随机微分方程,其赫斯特参数 H 大于 1 2 {\frac{1}{2}} 。.我们基本上确定了随机 Lipschitz 系数和随机积分-Lipschitz 系数情况下解的存在性和唯一性。本文中使用的随机积分是发散型积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信