Spatial-Temporal Masked Autoencoder for Multi-Device Wearable Human Activity Recognition

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shenghuan Miao, Ling Chen, Rong Hu
{"title":"Spatial-Temporal Masked Autoencoder for Multi-Device Wearable Human Activity Recognition","authors":"Shenghuan Miao, Ling Chen, Rong Hu","doi":"10.1145/3631415","DOIUrl":null,"url":null,"abstract":"The widespread adoption of wearable devices has led to a surge in the development of multi-device wearable human activity recognition (WHAR) systems. Nevertheless, the performance of traditional supervised learning-based methods to WHAR is limited by the challenge of collecting ample annotated wearable data. To overcome this limitation, self-supervised learning (SSL) has emerged as a promising solution by first training a competent feature extractor on a substantial quantity of unlabeled data, followed by refining a minimal classifier with a small amount of labeled data. Despite the promise of SSL in WHAR, the majority of studies have not considered missing device scenarios in multi-device WHAR. To bridge this gap, we propose a multi-device SSL WHAR method termed Spatial-Temporal Masked Autoencoder (STMAE). STMAE captures discriminative activity representations by utilizing the asymmetrical encoder-decoder structure and two-stage spatial-temporal masking strategy, which can exploit the spatial-temporal correlations in multi-device data to improve the performance of SSL WHAR, especially on missing device scenarios. Experiments on four real-world datasets demonstrate the efficacy of STMAE in various practical scenarios.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread adoption of wearable devices has led to a surge in the development of multi-device wearable human activity recognition (WHAR) systems. Nevertheless, the performance of traditional supervised learning-based methods to WHAR is limited by the challenge of collecting ample annotated wearable data. To overcome this limitation, self-supervised learning (SSL) has emerged as a promising solution by first training a competent feature extractor on a substantial quantity of unlabeled data, followed by refining a minimal classifier with a small amount of labeled data. Despite the promise of SSL in WHAR, the majority of studies have not considered missing device scenarios in multi-device WHAR. To bridge this gap, we propose a multi-device SSL WHAR method termed Spatial-Temporal Masked Autoencoder (STMAE). STMAE captures discriminative activity representations by utilizing the asymmetrical encoder-decoder structure and two-stage spatial-temporal masking strategy, which can exploit the spatial-temporal correlations in multi-device data to improve the performance of SSL WHAR, especially on missing device scenarios. Experiments on four real-world datasets demonstrate the efficacy of STMAE in various practical scenarios.
用于多设备可穿戴人体活动识别的时空掩码自动编码器
随着可穿戴设备的广泛应用,多设备可穿戴人体活动识别(WHAR)系统的开发也随之激增。然而,传统的基于监督学习的人类活动识别(WHAR)方法由于难以收集到大量带注释的可穿戴设备数据而性能有限。为了克服这一限制,自监督学习(SSL)成为一种很有前景的解决方案,它首先在大量未标注数据上训练一个合格的特征提取器,然后用少量标注数据完善一个最小分类器。尽管 SSL 在 WHAR 中大有可为,但大多数研究都没有考虑多设备 WHAR 中的设备缺失情况。为了弥补这一不足,我们提出了一种多设备 SSL WHAR 方法,称为空间-时间掩码自动编码器(STMAE)。STMAE 利用非对称编码器-解码器结构和两阶段空间-时间掩码策略来捕捉具有区分性的活动表示,从而利用多设备数据中的空间-时间相关性来提高 SSL WHAR 的性能,尤其是在设备缺失的情况下。在四个真实数据集上的实验证明了 STMAE 在各种实际场景中的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信