{"title":"Wall Matters","authors":"Binbin Xie, Minhao Cui, Deepak Ganesan, Jie Xiong","doi":"10.1145/3631417","DOIUrl":null,"url":null,"abstract":"Wireless sensing has demonstrated its potential of utilizing radio frequency (RF) signals to sense individuals and objects. Among different wireless signals, LoRa signal is particularly promising for through-wall sensing owing to its strong penetration capability. However, existing works view walls as a \"bad\" thing as they attenuate signal power and decrease the sensing coverage. In this paper, we show a counter-intuitive observation, i.e., walls can be used to increase the sensing coverage if the RF devices are placed properly with respect to walls. To fully understand the underlying principle behind this observation, we develop a through-wall sensing model to mathematically quantify the effect of walls. We further show that besides increasing the sensing coverage, we can also use the wall to help mitigate interference, which is one well-known issue in wireless sensing. We demonstrate the effect of wall through two representative applications, i.e., macro-level human walking sensing and micro-level human respiration monitoring. Comprehensive experiments show that by properly deploying the transmitter and receiver with respect to the wall, the coverage of human walking detection can be expanded by more than 160%. By leveraging the effect of wall to mitigate interference, we can sense the tiny respiration of target even in the presence of three interferers walking nearby.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"2 4","pages":"1 - 22"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless sensing has demonstrated its potential of utilizing radio frequency (RF) signals to sense individuals and objects. Among different wireless signals, LoRa signal is particularly promising for through-wall sensing owing to its strong penetration capability. However, existing works view walls as a "bad" thing as they attenuate signal power and decrease the sensing coverage. In this paper, we show a counter-intuitive observation, i.e., walls can be used to increase the sensing coverage if the RF devices are placed properly with respect to walls. To fully understand the underlying principle behind this observation, we develop a through-wall sensing model to mathematically quantify the effect of walls. We further show that besides increasing the sensing coverage, we can also use the wall to help mitigate interference, which is one well-known issue in wireless sensing. We demonstrate the effect of wall through two representative applications, i.e., macro-level human walking sensing and micro-level human respiration monitoring. Comprehensive experiments show that by properly deploying the transmitter and receiver with respect to the wall, the coverage of human walking detection can be expanded by more than 160%. By leveraging the effect of wall to mitigate interference, we can sense the tiny respiration of target even in the presence of three interferers walking nearby.