Stability analysis of anisotropic Bianchi type I cosmological model

IF 0.9 Q2 MATHEMATICS
Sreelakshmi Pillai, Sanasam Surendra Singh
{"title":"Stability analysis of anisotropic Bianchi type I cosmological model","authors":"Sreelakshmi Pillai,&nbsp;Sanasam Surendra Singh","doi":"10.1007/s13370-023-01162-5","DOIUrl":null,"url":null,"abstract":"<div><p>Locally Rotationally Symmetric(LRS) Bianchi type I cosmological model interacting with scalar field and exponential potential is presented and phase plane analysis is done in the framework of dynamical systems. Evolution equations are analyzed and reduced to a system of ordinary differential equations which are autonomous by suitable variable transformations. All critical points both hyperbolic and non hyperbolic of the system are listed and their stability properties are analyzed and examined from the cosmological point of view. For non hyperbolic points perturbation theory is applied. Some representations of phase diagrams are shown explicitly.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-023-01162-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Locally Rotationally Symmetric(LRS) Bianchi type I cosmological model interacting with scalar field and exponential potential is presented and phase plane analysis is done in the framework of dynamical systems. Evolution equations are analyzed and reduced to a system of ordinary differential equations which are autonomous by suitable variable transformations. All critical points both hyperbolic and non hyperbolic of the system are listed and their stability properties are analyzed and examined from the cosmological point of view. For non hyperbolic points perturbation theory is applied. Some representations of phase diagrams are shown explicitly.

各向异性比安奇 I 型宇宙学模型的稳定性分析
提出了与标量场和指数势相互作用的局部旋转对称(LRS)比安奇 I 型宇宙学模型,并在动力学系统框架内进行了相平面分析。对演化方程进行了分析,并将其简化为一个常微分方程系统,该系统通过适当的变量变换而自治。列出了系统的所有双曲和非双曲临界点,并从宇宙学的角度分析和研究了它们的稳定性。对于非双曲点,应用了扰动理论。明确显示了相图的一些表现形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信