CAvatar

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Wenqiang Chen, Yexin Hu, Wei Song, Yingcheng Liu, Antonio Torralba, Wojciech Matusik
{"title":"CAvatar","authors":"Wenqiang Chen, Yexin Hu, Wei Song, Yingcheng Liu, Antonio Torralba, Wojciech Matusik","doi":"10.1145/3631424","DOIUrl":null,"url":null,"abstract":"Human mesh reconstruction is essential for various applications, including virtual reality, motion capture, sports performance analysis, and healthcare monitoring. In healthcare contexts such as nursing homes, it is crucial to employ plausible and non-invasive methods for human mesh reconstruction that preserve privacy and dignity. Traditional vision-based techniques encounter challenges related to occlusion, viewpoint limitations, lighting conditions, and privacy concerns. In this research, we present CAvatar, a real-time human mesh reconstruction approach that innovatively utilizes pressure maps recorded by a tactile carpet as input. This advanced, non-intrusive technology obviates the need for cameras during usage, thereby safeguarding privacy. Our approach addresses several challenges, such as the limited spatial resolution of tactile sensors, extracting meaningful information from noisy pressure maps, and accommodating user variations and multiple users. We have developed an attention-based deep learning network, complemented by a discriminator network, to predict 3D human pose and shape from 2D pressure maps with notable accuracy. Our model demonstrates promising results, with a mean per joint position error (MPJPE) of 5.89 cm and a per vertex error (PVE) of 6.88 cm. To the best of our knowledge, we are the first to generate 3D mesh of human activities solely using tactile carpet signals, offering a novel approach that addresses privacy concerns and surpasses the limitations of existing vision-based and wearable solutions. The demonstration of CAvatar is shown at https://youtu.be/ZpO3LEsgV7Y.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Human mesh reconstruction is essential for various applications, including virtual reality, motion capture, sports performance analysis, and healthcare monitoring. In healthcare contexts such as nursing homes, it is crucial to employ plausible and non-invasive methods for human mesh reconstruction that preserve privacy and dignity. Traditional vision-based techniques encounter challenges related to occlusion, viewpoint limitations, lighting conditions, and privacy concerns. In this research, we present CAvatar, a real-time human mesh reconstruction approach that innovatively utilizes pressure maps recorded by a tactile carpet as input. This advanced, non-intrusive technology obviates the need for cameras during usage, thereby safeguarding privacy. Our approach addresses several challenges, such as the limited spatial resolution of tactile sensors, extracting meaningful information from noisy pressure maps, and accommodating user variations and multiple users. We have developed an attention-based deep learning network, complemented by a discriminator network, to predict 3D human pose and shape from 2D pressure maps with notable accuracy. Our model demonstrates promising results, with a mean per joint position error (MPJPE) of 5.89 cm and a per vertex error (PVE) of 6.88 cm. To the best of our knowledge, we are the first to generate 3D mesh of human activities solely using tactile carpet signals, offering a novel approach that addresses privacy concerns and surpasses the limitations of existing vision-based and wearable solutions. The demonstration of CAvatar is shown at https://youtu.be/ZpO3LEsgV7Y.
CAvatar
人体网状结构重建对于各种应用都至关重要,包括虚拟现实、动作捕捉、运动表现分析和医疗保健监测。在养老院等医疗环境中,采用合理、非侵入性的方法进行人体网状结构重建并保护隐私和尊严至关重要。传统的基于视觉的技术会遇到与遮挡、视角限制、照明条件和隐私问题相关的挑战。在这项研究中,我们提出了一种实时人体网状结构重建方法 CAvatar,它创新性地利用触觉地毯记录的压力图作为输入。这种先进的非侵入式技术在使用过程中无需摄像头,从而保护了隐私。我们的方法解决了几个难题,如触觉传感器有限的空间分辨率、从嘈杂的压力图中提取有意义的信息以及适应用户变化和多用户等。我们开发了一个基于注意力的深度学习网络,并辅以一个判别网络,可以从二维压力图中预测三维人体姿势和形状,而且准确度很高。我们的模型取得了可喜的成果,平均每个关节位置误差(MPJPE)为 5.89 厘米,每个顶点误差(PVE)为 6.88 厘米。据我们所知,我们是第一个完全使用触觉地毯信号生成人体活动三维网格的公司,提供了一种解决隐私问题的新方法,超越了现有基于视觉和可穿戴解决方案的局限性。CAvatar 演示见 https://youtu.be/ZpO3LEsgV7Y。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信