Feasibility study on Multiphysics H2-O2 combustion model for space debris removal system – NIRCSAT-X

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Gasser Abdelal , Lorenzo Stella , Yasser Mahmoudi , Michael Murphy , Wasif Naeem
{"title":"Feasibility study on Multiphysics H2-O2 combustion model for space debris removal system – NIRCSAT-X","authors":"Gasser Abdelal ,&nbsp;Lorenzo Stella ,&nbsp;Yasser Mahmoudi ,&nbsp;Michael Murphy ,&nbsp;Wasif Naeem","doi":"10.1016/j.ejrs.2023.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>Space debris is a growing problem for low earth orbit (LEO) and geosynchronous orbit (GEO). The risk of space debris currently affects human activities in Space and is controlled by the collision avoidance alert. However, the risk is growing, which increases future space mission costs to avoid or shield against space debris impact.</p><p>The project has evolved over four years, culminating in Meng/BEng graduation projects. At the heart of our innovation is utilising the naturally high temperatures in the exosphere and stratosphere, which can soar to 1200 °C. This environment is ideal for initiating a chemical reaction within a pressurised chamber containing a mix of H2-O2 gases, generating heat sufficient to ablate common space debris materials such as titanium, aluminium, and composites. We have crafted an initial satellite design and performed Multiphysics simulations using COMSOL to validate our concept. The project now seeks investment to enhance four critical areas: the satellite's mechanical design to ensure safe operation within a debris field, the development of a dynamic control system for debris collection and satellite navigation, the management of H2 and O2 tank refilling, and the creation of a mechanism for the safe release of ablated materials back into Space.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110982323001102/pdfft?md5=b64f2849ce2a62cc86a6af36604912d1&pid=1-s2.0-S1110982323001102-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982323001102","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Space debris is a growing problem for low earth orbit (LEO) and geosynchronous orbit (GEO). The risk of space debris currently affects human activities in Space and is controlled by the collision avoidance alert. However, the risk is growing, which increases future space mission costs to avoid or shield against space debris impact.

The project has evolved over four years, culminating in Meng/BEng graduation projects. At the heart of our innovation is utilising the naturally high temperatures in the exosphere and stratosphere, which can soar to 1200 °C. This environment is ideal for initiating a chemical reaction within a pressurised chamber containing a mix of H2-O2 gases, generating heat sufficient to ablate common space debris materials such as titanium, aluminium, and composites. We have crafted an initial satellite design and performed Multiphysics simulations using COMSOL to validate our concept. The project now seeks investment to enhance four critical areas: the satellite's mechanical design to ensure safe operation within a debris field, the development of a dynamic control system for debris collection and satellite navigation, the management of H2 and O2 tank refilling, and the creation of a mechanism for the safe release of ablated materials back into Space.

空间碎片清除系统多物理场 H2-O2 燃烧模型可行性研究 - NIRCSAT-X
空间碎片是低地球轨道(LEO)和地球同步轨道(GEO)上一个日益严重的问题。空间碎片的风险目前影响着人类在太空的活动,并受到避免碰撞警报的控制。然而,这种风险在不断增加,从而增加了未来为避免或抵御空间碎片撞击而进行太空任务的成本。我们创新的核心是利用外大气层和平流层的自然高温,其温度可飙升至 1200 °C。这种环境非常适合在装有 H2-O2 混合气体的加压舱中启动化学反应,产生的热量足以烧蚀钛、铝和复合材料等常见太空碎片材料。我们已经完成了卫星的初步设计,并使用 COMSOL 进行了多物理场模拟,以验证我们的概念。目前,该项目正在寻求投资,以加强四个关键领域:卫星的机械设计,以确保在碎片场内的安全运行;开发用于碎片收集和卫星导航的动态控制系统;管理 H2 和 O2 储罐的再充填;以及创建一种将烧蚀材料安全释放回太空的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信