Alexandra Münster, Julia Huster, Susanne Sommer, Corinna Traxler, Angeline Votteler, Wolfgang Hauber
{"title":"Enhanced Risky Choice in Male Rats Elicited by the Acute Pharmacological Stressor Yohimbine Involves Prefrontal Dopamine D1 Receptor Activation.","authors":"Alexandra Münster, Julia Huster, Susanne Sommer, Corinna Traxler, Angeline Votteler, Wolfgang Hauber","doi":"10.1093/ijnp/pyae006","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute stress alters risk-based decision-making; however, the underlying neural and neurochemical substrates are underexplored. Given their well-documented stress-inducing effects in humans and laboratory animals, glucocorticoids such as cortisol and corticosterone and the α2-adrenoceptor antagonist yohimbine represent potent pharmacological tools to mimic some characteristics of acute stress.</p><p><strong>Methods: </strong>Here, we analyzed the effects of the pharmacological stressors corticosterone and yohimbine given systemically on risk-based decision-making in male rats. Moreover, we investigated whether pharmacological stressor effects on risk-based decision-making involve dopamine D1 receptor stimulation in the dorsal prelimbic cortex (PL). We used a risk discounting task that requires choosing between a certain/small reward lever that always delivered 1 pellet and a risky/large reward lever that delivered 4 pellets with a decreasing probability across subsequent trials.</p><p><strong>Results: </strong>Systemic administration of yohimbine increased the preference for the risky/large reward lever. By contrast, systemic single administration of corticosterone did not significantly promote risky choice. Moreover, co-administration of corticosterone did not enhance the effects of yohimbine on risky choice. The data further show that the increased preference for the risky/large reward lever under systemic yohimbine was lowered by a concurrent pharmacological blockade of dopamine D1 receptors in the PL.</p><p><strong>Conclusions: </strong>Our rodent data provide causal evidence that stimulation of PL D1 receptors may represent a neurochemical mechanism by which the acute pharmacological stressor yohimbine, and possibly nonpharmacological stressors as well, promote risky choice.</p>","PeriodicalId":14134,"journal":{"name":"International Journal of Neuropsychopharmacology","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10852621/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neuropsychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ijnp/pyae006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Acute stress alters risk-based decision-making; however, the underlying neural and neurochemical substrates are underexplored. Given their well-documented stress-inducing effects in humans and laboratory animals, glucocorticoids such as cortisol and corticosterone and the α2-adrenoceptor antagonist yohimbine represent potent pharmacological tools to mimic some characteristics of acute stress.
Methods: Here, we analyzed the effects of the pharmacological stressors corticosterone and yohimbine given systemically on risk-based decision-making in male rats. Moreover, we investigated whether pharmacological stressor effects on risk-based decision-making involve dopamine D1 receptor stimulation in the dorsal prelimbic cortex (PL). We used a risk discounting task that requires choosing between a certain/small reward lever that always delivered 1 pellet and a risky/large reward lever that delivered 4 pellets with a decreasing probability across subsequent trials.
Results: Systemic administration of yohimbine increased the preference for the risky/large reward lever. By contrast, systemic single administration of corticosterone did not significantly promote risky choice. Moreover, co-administration of corticosterone did not enhance the effects of yohimbine on risky choice. The data further show that the increased preference for the risky/large reward lever under systemic yohimbine was lowered by a concurrent pharmacological blockade of dopamine D1 receptors in the PL.
Conclusions: Our rodent data provide causal evidence that stimulation of PL D1 receptors may represent a neurochemical mechanism by which the acute pharmacological stressor yohimbine, and possibly nonpharmacological stressors as well, promote risky choice.
期刊介绍:
The central focus of the journal is on research that advances understanding of existing and new neuropsychopharmacological agents including their mode of action and clinical application or provides insights into the biological basis of psychiatric disorders and thereby advances their pharmacological treatment. Such research may derive from the full spectrum of biological and psychological fields of inquiry encompassing classical and novel techniques in neuropsychopharmacology as well as strategies such as neuroimaging, genetics, psychoneuroendocrinology and neuropsychology.