{"title":"Limited Range Extrapolation with Quantitative Bounds and Applications","authors":"Mingming Cao, Honghai Liu, Zengyan Si, Kôzô Yabuta","doi":"10.1007/s00041-023-10061-z","DOIUrl":null,"url":null,"abstract":"<p>In recent years, sharp or quantitative weighted inequalities have attracted considerable attention on account of the <span>\\(A_2\\)</span> conjecture solved by Hytönen. Advances have greatly improved conceptual understanding of classical objects such as Calderón–Zygmund operators. However, plenty of operators do not fit into the class of Calderón–Zygmund operators and fail to be bounded on all <span>\\(L^p(w)\\)</span> spaces for <span>\\(p \\in (1, \\infty )\\)</span> and <span>\\(w \\in A_p\\)</span>. In this paper we develop Rubio de Francia extrapolation with quantitative bounds to investigate quantitative weighted inequalities for operators beyond the (multilinear) Calderón–Zygmund theory. We mainly establish a quantitative multilinear limited range extrapolation in terms of exponents <span>\\(p_i \\in (\\mathfrak {p}_i^-, \\mathfrak {p}_i^+)\\)</span> and weights <span>\\(w_i^{p_i} \\in A_{p_i/\\mathfrak {p}_i^-} \\cap RH_{(\\mathfrak {p}_i^+/p_i)'}\\)</span>, <span>\\(i=1, \\ldots , m\\)</span>, which refines a result of Cruz-Uribe and Martell. We also present an extrapolation from multilinear operators to the corresponding commutators. Additionally, our result is quantitative and allows us to extend special quantitative estimates in the Banach space setting to the quasi-Banach space setting. Our proof is based on an off-diagonal extrapolation result with quantitative bounds. Finally, we present various applications to illustrate the utility of extrapolation by concentrating on quantitative weighted estimates for some typical multilinear operators such as bilinear Bochner–Riesz means, bilinear rough singular integrals, and multilinear Fourier multipliers. In the linear case, based on the Littlewood–Paley theory, we include weighted jump and variational inequalities for rough singular integrals.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00041-023-10061-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, sharp or quantitative weighted inequalities have attracted considerable attention on account of the \(A_2\) conjecture solved by Hytönen. Advances have greatly improved conceptual understanding of classical objects such as Calderón–Zygmund operators. However, plenty of operators do not fit into the class of Calderón–Zygmund operators and fail to be bounded on all \(L^p(w)\) spaces for \(p \in (1, \infty )\) and \(w \in A_p\). In this paper we develop Rubio de Francia extrapolation with quantitative bounds to investigate quantitative weighted inequalities for operators beyond the (multilinear) Calderón–Zygmund theory. We mainly establish a quantitative multilinear limited range extrapolation in terms of exponents \(p_i \in (\mathfrak {p}_i^-, \mathfrak {p}_i^+)\) and weights \(w_i^{p_i} \in A_{p_i/\mathfrak {p}_i^-} \cap RH_{(\mathfrak {p}_i^+/p_i)'}\), \(i=1, \ldots , m\), which refines a result of Cruz-Uribe and Martell. We also present an extrapolation from multilinear operators to the corresponding commutators. Additionally, our result is quantitative and allows us to extend special quantitative estimates in the Banach space setting to the quasi-Banach space setting. Our proof is based on an off-diagonal extrapolation result with quantitative bounds. Finally, we present various applications to illustrate the utility of extrapolation by concentrating on quantitative weighted estimates for some typical multilinear operators such as bilinear Bochner–Riesz means, bilinear rough singular integrals, and multilinear Fourier multipliers. In the linear case, based on the Littlewood–Paley theory, we include weighted jump and variational inequalities for rough singular integrals.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.