{"title":"Time-resolved characteristics of oscillatory particle-laden air flow in a realistic human airway model","authors":"J. Jedelsky, F. Lizal, M. Jicha","doi":"10.1016/j.euromechflu.2024.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>Human airways represent a complex flow system with a spatially and temporally variable character of air flow during respiration. In this paper, we experimentally studied the oscillatory flow<span> of air with monodispersed micron-sized liquid particles in a transparent, anatomically realistic model of human upper airways and several bronchi generations using phase-Doppler anemometry (PDA). The PDA provided point-wise high-frequency measurements of axial velocities of individual aerosol particles in multiple positions of the airways (in the trachea and the upper bronchi) for three breathing regimes with a sinusoidal course. Typical time-resolved velocity plots at several positions within the model were documented and analysed using dimensionless criteria. Local mean air velocity and turbulence time-lines disclosed specific flow dynamic features in the multiple bifurcation system, namely the transit of vortical structures, oscillations induced by flow reversals, and inspiratory flow separations behind bifurcations. The results elucidated the laminar, transitional and turbulent flows during inspiratory and expiratory breathing phases. The character of the flow varies significantly with position in the airways, while the breathing regime has a generally low effect on the flow character. Inspection of the flow in the terminal branches indicated the need to add further branches for more realistic results there.</span></p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624000037","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Human airways represent a complex flow system with a spatially and temporally variable character of air flow during respiration. In this paper, we experimentally studied the oscillatory flow of air with monodispersed micron-sized liquid particles in a transparent, anatomically realistic model of human upper airways and several bronchi generations using phase-Doppler anemometry (PDA). The PDA provided point-wise high-frequency measurements of axial velocities of individual aerosol particles in multiple positions of the airways (in the trachea and the upper bronchi) for three breathing regimes with a sinusoidal course. Typical time-resolved velocity plots at several positions within the model were documented and analysed using dimensionless criteria. Local mean air velocity and turbulence time-lines disclosed specific flow dynamic features in the multiple bifurcation system, namely the transit of vortical structures, oscillations induced by flow reversals, and inspiratory flow separations behind bifurcations. The results elucidated the laminar, transitional and turbulent flows during inspiratory and expiratory breathing phases. The character of the flow varies significantly with position in the airways, while the breathing regime has a generally low effect on the flow character. Inspection of the flow in the terminal branches indicated the need to add further branches for more realistic results there.
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.