A Class of Oscillatory Singular Integrals with Rough Kernels and Fewnomials Phases

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiao Ma, Chenyan Wang, Huoxiong Wu
{"title":"A Class of Oscillatory Singular Integrals with Rough Kernels and Fewnomials Phases","authors":"Jiao Ma, Chenyan Wang, Huoxiong Wu","doi":"10.1007/s00041-023-10066-8","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the oscillatory singular integral operator <span>\\(T_Q\\)</span> defined by </p><span>$$\\begin{aligned} T_Qf(x)=\\mathrm{p.v.}\\int _{{\\mathbb {R}^n}}f(x-y)\\frac{\\Omega (y)}{|y|^n}e^{iQ(|y|)}dy, \\end{aligned}$$</span><p>where <span>\\(Q(t)=\\sum _{1\\le i\\le m}a_it^{\\alpha _i}\\)</span> is a real-valued polynomial on <span>\\(\\mathbb {R}\\)</span>, <span>\\(\\Omega \\)</span> is a homogenous function of degree zero on <span>\\(\\mathbb {R}^n\\)</span> with mean value zero on the unit sphere <span>\\(S^{n-1}\\)</span>. Under the assumption of that <span>\\(\\Omega \\in H^1(S^{n-1})\\)</span>, the authors show that <span>\\(T_Q\\)</span> is bounded on the weighted Lebesgue spaces <span>\\(L^p(\\omega )\\)</span> for <span>\\(1&lt;p&lt;\\infty \\)</span> and <span>\\(\\omega \\in \\tilde{A}_{p}^{I}(\\mathbb {R}_+)\\)</span> with the uniform bound only depending on <i>m</i>, the number of monomials in polynomial <i>Q</i>, not on the degree of <i>Q</i> as in the previous results. This result is new even in the case <span>\\(\\omega \\equiv 1\\)</span>, which can also be regarded as an improvement and generalization of the result obtained by Guo in [New York J. Math. 23 (2017), 1733-1738].</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00041-023-10066-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the oscillatory singular integral operator \(T_Q\) defined by

$$\begin{aligned} T_Qf(x)=\mathrm{p.v.}\int _{{\mathbb {R}^n}}f(x-y)\frac{\Omega (y)}{|y|^n}e^{iQ(|y|)}dy, \end{aligned}$$

where \(Q(t)=\sum _{1\le i\le m}a_it^{\alpha _i}\) is a real-valued polynomial on \(\mathbb {R}\), \(\Omega \) is a homogenous function of degree zero on \(\mathbb {R}^n\) with mean value zero on the unit sphere \(S^{n-1}\). Under the assumption of that \(\Omega \in H^1(S^{n-1})\), the authors show that \(T_Q\) is bounded on the weighted Lebesgue spaces \(L^p(\omega )\) for \(1<p<\infty \) and \(\omega \in \tilde{A}_{p}^{I}(\mathbb {R}_+)\) with the uniform bound only depending on m, the number of monomials in polynomial Q, not on the degree of Q as in the previous results. This result is new even in the case \(\omega \equiv 1\), which can also be regarded as an improvement and generalization of the result obtained by Guo in [New York J. Math. 23 (2017), 1733-1738].

一类具有粗糙内核和少项式相位的振荡奇积分
本文关注由 $$\begin{aligned} 定义的振荡奇异积分算子 \(T_Q\)T_Qf(x)=\mathrm{p.v.}int _{{{mathbb {R}^n}}f(x-y)\frac{Omega (y)}{|y|^n}e^{iQ(|y|)}dy, \end{aligned}$$其中 \(Q(t)=\sum _{1\le i\le m}a_it^{alpha _i}/)是 \(\mathbb {R}\) 上的实值多项式、\(\ω\)是在\(\mathbb {R}^n\)上的零度同源函数,在单位球面\(S^{n-1}\)上的均值为零。在 \(\Omega \in H^1(S^{n-1})\) 的假设下,作者证明了 \(T_Q\) 在加权的 Lebesgue 空间 \(L^p(\omega )\) 上是有界的(对于 \(1<p<;\和(\omega \in \tilde{A}_{p}^{I}(\mathbb {R}_+)\) 的均匀约束只取决于多项式 Q 中单项式的个数 m,而不像之前的结果那样取决于 Q 的度数。即使在 \(\omega \equiv 1\) 的情况下,这个结果也是新的,它也可以被看作是对郭在[New York J. Math. 23 (2017), 1733-1738] 中得到的结果的改进和概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信