{"title":"Circuit Equation of Grover Walk","authors":"Yusuke Higuchi, Etsuo Segawa","doi":"10.1007/s00023-023-01389-9","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the Grover walk on the infinite graph in which an internal finite subgraph receives the inflow from the outside with some frequency and also radiates the outflow to the outside. To characterize the stationary state of this system, which is represented by a function on the arcs of the graph, we introduce a kind of discrete gradient operator twisted by the frequency. Then, we obtain a circuit equation which shows that (i) the stationary state is described by the twisted gradient of a potential function which is a function on the vertices; (ii) the potential function satisfies the Poisson equation with respect to a generalized Laplacian matrix. Consequently, we characterize the scattering on the surface of the internal graph and the energy penetrating inside it. Moreover, for the complete graph as the internal graph, we illustrate the relationship of the scattering and the internal energy to the frequency and the number of tails.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 8","pages":"3739 - 3777"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-023-01389-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the Grover walk on the infinite graph in which an internal finite subgraph receives the inflow from the outside with some frequency and also radiates the outflow to the outside. To characterize the stationary state of this system, which is represented by a function on the arcs of the graph, we introduce a kind of discrete gradient operator twisted by the frequency. Then, we obtain a circuit equation which shows that (i) the stationary state is described by the twisted gradient of a potential function which is a function on the vertices; (ii) the potential function satisfies the Poisson equation with respect to a generalized Laplacian matrix. Consequently, we characterize the scattering on the surface of the internal graph and the energy penetrating inside it. Moreover, for the complete graph as the internal graph, we illustrate the relationship of the scattering and the internal energy to the frequency and the number of tails.
期刊介绍:
The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society.
The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.