{"title":"SAA-SDM: Neural Networks Faster Learned to Segment Organ Images","authors":"","doi":"10.1007/s10278-023-00947-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In the field of medicine, rapidly and accurately segmenting organs in medical images is a crucial application of computer technology. This paper introduces a feature map module, Strength Attention Area Signed Distance Map (SAA-SDM), based on the principal component analysis (PCA) principle. The module is designed to accelerate neural networks’ convergence speed in rapidly achieving high precision. SAA-SDM provides the neural network with confidence information regarding the target and background, similar to the signed distance map (SDM), thereby enhancing the network’s understanding of semantic information related to the target. Furthermore, this paper presents a training scheme tailored for the module, aiming to achieve finer segmentation and improved generalization performance. Validation of our approach is carried out using TRUS and chest X-ray datasets. Experimental results demonstrate that our method significantly enhances neural networks’ convergence speed and precision. For instance, the convergence speed of UNet and UNET + + is improved by more than 30%. Moreover, Segformer achieves an increase of over 6% and 3% in mIoU (mean Intersection over Union) on two test datasets without requiring pre-trained parameters. Our approach reduces the time and resource costs associated with training neural networks for organ segmentation tasks while effectively guiding the network to achieve meaningful learning even without pre-trained parameters. </p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-023-00947-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of medicine, rapidly and accurately segmenting organs in medical images is a crucial application of computer technology. This paper introduces a feature map module, Strength Attention Area Signed Distance Map (SAA-SDM), based on the principal component analysis (PCA) principle. The module is designed to accelerate neural networks’ convergence speed in rapidly achieving high precision. SAA-SDM provides the neural network with confidence information regarding the target and background, similar to the signed distance map (SDM), thereby enhancing the network’s understanding of semantic information related to the target. Furthermore, this paper presents a training scheme tailored for the module, aiming to achieve finer segmentation and improved generalization performance. Validation of our approach is carried out using TRUS and chest X-ray datasets. Experimental results demonstrate that our method significantly enhances neural networks’ convergence speed and precision. For instance, the convergence speed of UNet and UNET + + is improved by more than 30%. Moreover, Segformer achieves an increase of over 6% and 3% in mIoU (mean Intersection over Union) on two test datasets without requiring pre-trained parameters. Our approach reduces the time and resource costs associated with training neural networks for organ segmentation tasks while effectively guiding the network to achieve meaningful learning even without pre-trained parameters.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.