Chongfeng Duan, Dapeng Hao, Jiufa Cui, Gang Wang, Wenjian Xu, Nan Li, Xuejun Liu
{"title":"An MRI-Based Deep Transfer Learning Radiomics Nomogram to Predict Ki-67 Proliferation Index of Meningioma","authors":"Chongfeng Duan, Dapeng Hao, Jiufa Cui, Gang Wang, Wenjian Xu, Nan Li, Xuejun Liu","doi":"10.1007/s10278-023-00937-3","DOIUrl":null,"url":null,"abstract":"<p>The objective of this study was to predict Ki-67 proliferation index of meningioma by using a nomogram based on clinical, radiomics, and deep transfer learning (DTL) features. A total of 318 cases were enrolled in the study. The clinical, radiomics, and DTL features were selected to construct models. The calculation of radiomics and DTL score was completed by using selected features and correlation coefficient. The deep transfer learning radiomics (DTLR) nomogram was constructed by selected clinical features, radiomics score, and DTL score. The area under the receiver operator characteristic curve (AUC) was calculated. The models were compared by Delong test of AUCs and decision curve analysis (DCA). The features of sex, size, and peritumoral edema were selected to construct clinical model. Seven radiomics features and 15 DTL features were selected. The AUCs of clinical, radiomics, DTL model, and DTLR nomogram were 0.746, 0.75, 0.717, and 0.779 respectively. DTLR nomogram had the highest AUC of 0.779 (95% CI 0.6643–0.8943) with an accuracy rate of 0.734, a sensitivity value of 0.719, and a specificity value of 0.75 in test set. There was no significant difference in AUCs among four models in Delong test. The DTLR nomogram had a larger net benefit than other models across all the threshold probability. The DTLR nomogram had a satisfactory performance in Ki-67 prediction and could be a new evaluation method of meningioma which would be useful in the clinical decision-making.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"40 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-023-00937-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study was to predict Ki-67 proliferation index of meningioma by using a nomogram based on clinical, radiomics, and deep transfer learning (DTL) features. A total of 318 cases were enrolled in the study. The clinical, radiomics, and DTL features were selected to construct models. The calculation of radiomics and DTL score was completed by using selected features and correlation coefficient. The deep transfer learning radiomics (DTLR) nomogram was constructed by selected clinical features, radiomics score, and DTL score. The area under the receiver operator characteristic curve (AUC) was calculated. The models were compared by Delong test of AUCs and decision curve analysis (DCA). The features of sex, size, and peritumoral edema were selected to construct clinical model. Seven radiomics features and 15 DTL features were selected. The AUCs of clinical, radiomics, DTL model, and DTLR nomogram were 0.746, 0.75, 0.717, and 0.779 respectively. DTLR nomogram had the highest AUC of 0.779 (95% CI 0.6643–0.8943) with an accuracy rate of 0.734, a sensitivity value of 0.719, and a specificity value of 0.75 in test set. There was no significant difference in AUCs among four models in Delong test. The DTLR nomogram had a larger net benefit than other models across all the threshold probability. The DTLR nomogram had a satisfactory performance in Ki-67 prediction and could be a new evaluation method of meningioma which would be useful in the clinical decision-making.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.