TiCNet: Transformer in Convolutional Neural Network for Pulmonary Nodule Detection on CT Images

IF 2.9 2区 工程技术 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Ling Ma, Gen Li, Xingyu Feng, Qiliang Fan, Lizhi Liu
{"title":"TiCNet: Transformer in Convolutional Neural Network for Pulmonary Nodule Detection on CT Images","authors":"Ling Ma, Gen Li, Xingyu Feng, Qiliang Fan, Lizhi Liu","doi":"10.1007/s10278-023-00904-y","DOIUrl":null,"url":null,"abstract":"<p>Lung cancer is the leading cause of cancer death. Since lung cancer appears as nodules in the early stage, detecting the pulmonary nodules in an early phase could enhance the treatment efficiency and improve the survival rate of patients. The development of computer-aided analysis technology has made it possible to automatically detect lung nodules in Computed Tomography (CT) screening. In this paper, we propose a novel detection network, TiCNet. It is attempted to embed a transformer module in the 3D Convolutional Neural Network (CNN) for pulmonary nodule detection on CT images. First, we integrate the transformer and CNN in an end-to-end structure to capture both the short- and long-range dependency to provide rich information on the characteristics of nodules. Second, we design the attention block and multi-scale skip pathways for improving the detection of small nodules. Last, we develop a two-head detector to guarantee high sensitivity and specificity. Experimental results on the LUNA16 dataset and PN9 dataset showed that our proposed TiCNet achieved superior performance compared with existing lung nodule detection methods. Moreover, the effectiveness of each module has been proven. The proposed TiCNet model is an effective tool for pulmonary nodule detection. Validation revealed that this model exhibited excellent performance, suggesting its potential usefulness to support lung cancer screening.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"85 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-023-00904-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer is the leading cause of cancer death. Since lung cancer appears as nodules in the early stage, detecting the pulmonary nodules in an early phase could enhance the treatment efficiency and improve the survival rate of patients. The development of computer-aided analysis technology has made it possible to automatically detect lung nodules in Computed Tomography (CT) screening. In this paper, we propose a novel detection network, TiCNet. It is attempted to embed a transformer module in the 3D Convolutional Neural Network (CNN) for pulmonary nodule detection on CT images. First, we integrate the transformer and CNN in an end-to-end structure to capture both the short- and long-range dependency to provide rich information on the characteristics of nodules. Second, we design the attention block and multi-scale skip pathways for improving the detection of small nodules. Last, we develop a two-head detector to guarantee high sensitivity and specificity. Experimental results on the LUNA16 dataset and PN9 dataset showed that our proposed TiCNet achieved superior performance compared with existing lung nodule detection methods. Moreover, the effectiveness of each module has been proven. The proposed TiCNet model is an effective tool for pulmonary nodule detection. Validation revealed that this model exhibited excellent performance, suggesting its potential usefulness to support lung cancer screening.

Abstract Image

TiCNet:用于 CT 图像肺结节检测的卷积神经网络变换器
肺癌是导致癌症死亡的主要原因。由于肺癌在早期表现为结节,因此早期发现肺结节可以提高治疗效率,改善患者的生存率。计算机辅助分析技术的发展使得在计算机断层扫描(CT)筛查中自动检测肺结节成为可能。本文提出了一种新型检测网络 TiCNet。它尝试在三维卷积神经网络(CNN)中嵌入一个变换器模块,用于 CT 图像上的肺结节检测。首先,我们将变换器和 CNN 整合为端到端结构,捕捉短程和长程依赖关系,从而提供丰富的结节特征信息。其次,我们设计了注意块和多尺度跳过路径,以提高对小结节的检测。最后,我们开发了一种双头检测器,以保证高灵敏度和高特异性。在 LUNA16 数据集和 PN9 数据集上的实验结果表明,与现有的肺结节检测方法相比,我们提出的 TiCNet 性能更优。此外,每个模块的有效性也得到了证实。提出的 TiCNet 模型是肺结节检测的有效工具。验证结果表明,该模型表现出卓越的性能,表明它在支持肺癌筛查方面具有潜在的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Digital Imaging
Journal of Digital Imaging 医学-核医学
CiteScore
7.50
自引率
6.80%
发文量
192
审稿时长
6-12 weeks
期刊介绍: The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals. Suggested Topics PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信