{"title":"Reliable Delineation of Clinical Target Volumes for Cervical Cancer Radiotherapy on CT/MR Dual-Modality Images","authors":"Ying Sun, Yuening Wang, Kexin Gan, Yuxin Wang, Ying Chen, Yun Ge, Jie Yuan, Hanzi Xu","doi":"10.1007/s10278-023-00951-5","DOIUrl":null,"url":null,"abstract":"<p>Accurate delineation of the clinical target volume (CTV) is a crucial prerequisite for safe and effective radiotherapy characterized. This study addresses the integration of magnetic resonance (MR) images to aid in target delineation on computed tomography (CT) images. However, obtaining MR images directly can be challenging. Therefore, we employ AI-based image generation techniques to “intelligentially generate” MR images from CT images to improve CTV delineation based on CT images. To generate high-quality MR images, we propose an attention-guided single-loop image generation model. The model can yield higher-quality images by introducing an attention mechanism in feature extraction and enhancing the loss function. Based on the generated MR images, we propose a CTV segmentation model fusing multi-scale features through image fusion and a hollow space pyramid module to enhance segmentation accuracy. The image generation model used in this study improves the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) from 14.87 and 0.58 to 16.72 and 0.67, respectively, and improves the feature distribution distance and learning-perception image similarity from 180.86 and 0.28 to 110.98 and 0.22, achieving higher quality image generation. The proposed segmentation method demonstrates high accuracy, compared with the FCN method, the intersection over union ratio and the Dice coefficient are improved from 0.8360 and 0.8998 to 0.9043 and 0.9473, respectively. Hausdorff distance and mean surface distance decreased from 5.5573 mm and 2.3269 mm to 4.7204 mm and 0.9397 mm, respectively, achieving clinically acceptable segmentation accuracy. Our method might reduce physicians’ manual workload and accelerate the diagnosis and treatment process while decreasing inter-observer variability in identifying anatomical structures.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-023-00951-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate delineation of the clinical target volume (CTV) is a crucial prerequisite for safe and effective radiotherapy characterized. This study addresses the integration of magnetic resonance (MR) images to aid in target delineation on computed tomography (CT) images. However, obtaining MR images directly can be challenging. Therefore, we employ AI-based image generation techniques to “intelligentially generate” MR images from CT images to improve CTV delineation based on CT images. To generate high-quality MR images, we propose an attention-guided single-loop image generation model. The model can yield higher-quality images by introducing an attention mechanism in feature extraction and enhancing the loss function. Based on the generated MR images, we propose a CTV segmentation model fusing multi-scale features through image fusion and a hollow space pyramid module to enhance segmentation accuracy. The image generation model used in this study improves the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) from 14.87 and 0.58 to 16.72 and 0.67, respectively, and improves the feature distribution distance and learning-perception image similarity from 180.86 and 0.28 to 110.98 and 0.22, achieving higher quality image generation. The proposed segmentation method demonstrates high accuracy, compared with the FCN method, the intersection over union ratio and the Dice coefficient are improved from 0.8360 and 0.8998 to 0.9043 and 0.9473, respectively. Hausdorff distance and mean surface distance decreased from 5.5573 mm and 2.3269 mm to 4.7204 mm and 0.9397 mm, respectively, achieving clinically acceptable segmentation accuracy. Our method might reduce physicians’ manual workload and accelerate the diagnosis and treatment process while decreasing inter-observer variability in identifying anatomical structures.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.