Global well-posedness of the incompressible Hall-MHD system in critical spaces

IF 1.1 3区 数学 Q1 MATHEMATICS
Mikihiro Fujii
{"title":"Global well-posedness of the incompressible Hall-MHD system in critical spaces","authors":"Mikihiro Fujii","doi":"10.1007/s00028-023-00933-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the initial value problem of the incompressible Hall-MHD system and prove the global well-posedness in the scaling critical class <span>\\({\\dot{B}}_{p,\\infty }^{-1+\\frac{3}{p}}(\\mathbb {R}^3)\\times ({\\dot{B}}_{p,\\infty }^{-1+\\frac{3}{p}}(\\mathbb {R}^3) \\cap L^{\\infty }(\\mathbb {R}^3))\\)</span> for <span>\\(3&lt; p &lt; \\infty \\)</span>. Moreover, we also refine the smallness conditions and show that our global well-posedness holds for initial data whose <span>\\({\\dot{B}}_{p,\\infty }^{-1+\\frac{3}{p}}(\\mathbb {R}^3)\\)</span>-norm is large, provided that some weaker norm is sufficiently small.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-023-00933-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the initial value problem of the incompressible Hall-MHD system and prove the global well-posedness in the scaling critical class \({\dot{B}}_{p,\infty }^{-1+\frac{3}{p}}(\mathbb {R}^3)\times ({\dot{B}}_{p,\infty }^{-1+\frac{3}{p}}(\mathbb {R}^3) \cap L^{\infty }(\mathbb {R}^3))\) for \(3< p < \infty \). Moreover, we also refine the smallness conditions and show that our global well-posedness holds for initial data whose \({\dot{B}}_{p,\infty }^{-1+\frac{3}{p}}(\mathbb {R}^3)\)-norm is large, provided that some weaker norm is sufficiently small.

临界空间中不可压缩霍尔-MHD 系统的全局拟合性
在本文中,我们考虑了不可压缩霍尔-MHD 系统的初值问题,并证明了在缩放临界类 \({\dot{B}}_{p、({\dot{B}}_{p,\infty }^{-1+\frac{3}{p}}(\mathbb {R}^3)\times ({\dot{B}}_{p,\infty }^{-1+\frac{3}{p}}(\mathbb {R}^3) \cap L^{infty }(\mathbb {R}^3))\) for\(3<;p < \infty \)。此外,我们还完善了微小性条件,并证明对于初始数据的 \({\dot{B}}_{p,\infty }^{-1+\frac{3}{p}}(\mathbb {R}^3)\)-norm很大的情况,只要某个较弱的 norm 足够小,我们的全局好求解性就成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信