Multifractal emergent processes: Multiplicative interactions override nonlinear component properties

Madhur Mangalam, Damian G Kelty-Stephen
{"title":"Multifractal emergent processes: Multiplicative interactions override nonlinear component properties","authors":"Madhur Mangalam, Damian G Kelty-Stephen","doi":"arxiv-2401.05105","DOIUrl":null,"url":null,"abstract":"Among the statistical models employed to approximate nonlinear interactions\nin biological and psychological processes, one prominent framework is that of\ncascades. Despite decades of empirical work using multifractal formalisms, a\nfundamental question has persisted: Do the observed nonlinear interactions\nacross scales owe their origin to multiplicative interactions, or do they\ninherently reside within the constituent processes? This study presents the\nresults of rigorous numerical simulations that demonstrate the supremacy of\nmultiplicative interactions over the intrinsic nonlinear properties of\ncomponent processes. To elucidate this point, we conducted simulations of\ncascade time series featuring component processes operating at distinct\ntimescales, each characterized by one of four properties: multifractal\nnonlinearity, multifractal linearity (obtained via the Iterative Amplitude\nAdjusted Wavelet Transform of multifractal nonlinearity), phase-randomized\nlinearity (obtained via the Iterative Amplitude Adjustment Fourier Transform),\nand phase- and amplitude-randomized (obtained via shuffling). Our findings\nunequivocally establish that the multiplicative interactions among components,\nrather than the inherent properties of the component processes themselves,\ndecisively dictate the multifractal emergent properties. Remarkably, even\ncomponent processes exhibiting purely linear traits can generate nonlinear\ninteractions across scales when these interactions assume a multiplicative\nnature. In stark contrast, additivity among component processes inevitably\nleads to a linear outcome. These outcomes provide a robust theoretical\nunderpinning for current interpretations of multifractal nonlinearity, firmly\nanchoring its roots in the domain of multiplicative interactions across scales\nwithin biological and psychological processes.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.05105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Among the statistical models employed to approximate nonlinear interactions in biological and psychological processes, one prominent framework is that of cascades. Despite decades of empirical work using multifractal formalisms, a fundamental question has persisted: Do the observed nonlinear interactions across scales owe their origin to multiplicative interactions, or do they inherently reside within the constituent processes? This study presents the results of rigorous numerical simulations that demonstrate the supremacy of multiplicative interactions over the intrinsic nonlinear properties of component processes. To elucidate this point, we conducted simulations of cascade time series featuring component processes operating at distinct timescales, each characterized by one of four properties: multifractal nonlinearity, multifractal linearity (obtained via the Iterative Amplitude Adjusted Wavelet Transform of multifractal nonlinearity), phase-randomized linearity (obtained via the Iterative Amplitude Adjustment Fourier Transform), and phase- and amplitude-randomized (obtained via shuffling). Our findings unequivocally establish that the multiplicative interactions among components, rather than the inherent properties of the component processes themselves, decisively dictate the multifractal emergent properties. Remarkably, even component processes exhibiting purely linear traits can generate nonlinear interactions across scales when these interactions assume a multiplicative nature. In stark contrast, additivity among component processes inevitably leads to a linear outcome. These outcomes provide a robust theoretical underpinning for current interpretations of multifractal nonlinearity, firmly anchoring its roots in the domain of multiplicative interactions across scales within biological and psychological processes.
多分形突发过程:乘法相互作用超越非线性成分特性
在用于近似生物和心理过程中非线性相互作用的统计模型中,一个突出的框架是级联模型。尽管使用多分形形式进行了数十年的实证研究,但一个基本问题仍然存在:观察到的跨尺度非线性相互作用是源于乘法相互作用,还是本身就存在于组成过程中?本研究介绍了严格的数值模拟结果,证明乘法相互作用优于组成过程的内在非线性特性。为了阐明这一点,我们对级联时间序列进行了模拟,这些级联时间序列具有在不同时间尺度上运行的组成过程,每个过程都具有以下四种特性之一:多分形非线性、多分形线性(通过多分形非线性的迭代振幅调整小波变换获得)、相位随机线性(通过迭代振幅调整傅立叶变换获得)以及相位和振幅随机(通过洗牌获得)。我们的研究结果明确证实,决定多分形突现特性的是分量之间的乘法相互作用,而不是分量过程本身的固有特性。值得注意的是,即使是表现出纯粹线性特征的成分过程,当这些相互作用具有乘法性质时,也会产生跨尺度的非线性相互作用。与此形成鲜明对比的是,成分过程之间的相加性必然导致线性结果。这些结果为目前对多分形非线性的解释提供了坚实的理论基础,牢牢地将其根植于生物和心理过程中跨尺度的乘法相互作用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信