{"title":"On the dynamic residual measure of inaccuracy based on extropy in order statistics","authors":"M. Mohammadi, M. Hashempour, O. Kamari","doi":"10.1017/s0269964823000268","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce a novel way to quantify the remaining inaccuracy of order statistics by utilizing the concept of extropy. We explore various properties and characteristics of this new measure. Additionally, we expand the notion of inaccuracy for ordered random variables to a dynamic version and demonstrate that this dynamic information measure provides a unique determination of the distribution function. Moreover, we investigate specific lifetime distributions by analyzing the residual inaccuracy of the first-order statistics. Nonparametric kernel estimation of the proposed measure is suggested. Simulation results show that the kernel estimator with bandwidth selection using the cross-validation method has the best performance. Finally, an application of the proposed measure on the model selection is provided.</p>","PeriodicalId":54582,"journal":{"name":"Probability in the Engineering and Informational Sciences","volume":"59 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability in the Engineering and Informational Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/s0269964823000268","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce a novel way to quantify the remaining inaccuracy of order statistics by utilizing the concept of extropy. We explore various properties and characteristics of this new measure. Additionally, we expand the notion of inaccuracy for ordered random variables to a dynamic version and demonstrate that this dynamic information measure provides a unique determination of the distribution function. Moreover, we investigate specific lifetime distributions by analyzing the residual inaccuracy of the first-order statistics. Nonparametric kernel estimation of the proposed measure is suggested. Simulation results show that the kernel estimator with bandwidth selection using the cross-validation method has the best performance. Finally, an application of the proposed measure on the model selection is provided.
期刊介绍:
The primary focus of the journal is on stochastic modelling in the physical and engineering sciences, with particular emphasis on queueing theory, reliability theory, inventory theory, simulation, mathematical finance and probabilistic networks and graphs. Papers on analytic properties and related disciplines are also considered, as well as more general papers on applied and computational probability, if appropriate. Readers include academics working in statistics, operations research, computer science, engineering, management science and physical sciences as well as industrial practitioners engaged in telecommunications, computer science, financial engineering, operations research and management science.