Cactus groups, twin groups, and right-angled Artin groups

Pub Date : 2024-01-10 DOI:10.1007/s10801-023-01286-8
Paolo Bellingeri, Hugo Chemin, Victoria Lebed
{"title":"Cactus groups, twin groups, and right-angled Artin groups","authors":"Paolo Bellingeri, Hugo Chemin, Victoria Lebed","doi":"10.1007/s10801-023-01286-8","DOIUrl":null,"url":null,"abstract":"<p>Cactus groups <span>\\(J_n\\)</span> are currently attracting considerable interest from diverse mathematical communities. This work explores their relations to right-angled Coxeter groups and, in particular, twin groups <span>\\(Tw_n\\)</span> and Mostovoy’s Gauss diagram groups <span>\\(D_n\\)</span>, which are better understood. Concretely, we construct an injective group 1-cocycle from <span>\\(J_n\\)</span> to <span>\\(D_n\\)</span> and show that <span>\\(Tw_n\\)</span> (and its <i>k</i>-leaf generalizations) inject into <span>\\(J_n\\)</span>. As a corollary, we solve the word problem for cactus groups, determine their torsion (which is only even) and center (which is trivial), and answer the same questions for pure cactus groups, <span>\\(PJ_n\\)</span>. In addition, we yield a 1-relator presentation of the first non-abelian pure cactus group <span>\\(PJ_4\\)</span>. Our tools come mainly from combinatorial group theory.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-023-01286-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cactus groups \(J_n\) are currently attracting considerable interest from diverse mathematical communities. This work explores their relations to right-angled Coxeter groups and, in particular, twin groups \(Tw_n\) and Mostovoy’s Gauss diagram groups \(D_n\), which are better understood. Concretely, we construct an injective group 1-cocycle from \(J_n\) to \(D_n\) and show that \(Tw_n\) (and its k-leaf generalizations) inject into \(J_n\). As a corollary, we solve the word problem for cactus groups, determine their torsion (which is only even) and center (which is trivial), and answer the same questions for pure cactus groups, \(PJ_n\). In addition, we yield a 1-relator presentation of the first non-abelian pure cactus group \(PJ_4\). Our tools come mainly from combinatorial group theory.

Abstract Image

分享
查看原文
仙人掌群、孪生群和直角阿尔丁群
仙人掌群(J_n\ )目前正吸引着不同数学界的浓厚兴趣。这项工作探讨了它们与直角考克赛特群的关系,尤其是孪生群(Tw_n\ )和莫斯托沃伊的高斯图群(D_n\ ),这两个群更容易理解。具体来说,我们构建了一个从\(J_n\)到\(D_n\)的注入群1-循环,并证明了\(Tw_n\)(及其k叶广义)注入到\(J_n\)中。作为推论,我们解决了仙人掌群的字问题,确定了它们的扭转(只有偶数)和中心(微不足道),并回答了纯仙人掌群(PJ_n\ )的同样问题。此外,我们还得到了第一个非阿贝尔纯仙人掌群 \(PJ_4\) 的 1-relator 呈现。我们的工具主要来自组合群理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信