One-shot Federated Learning on Medical Data using Knowledge Distillation with Image Synthesis and Client Model Adaptation.

Myeongkyun Kang, Philip Chikontwe, Soopil Kim, Kyong Hwan Jin, Ehsan Adeli, Kilian M Pohl, Sang Hyun Park
{"title":"One-shot Federated Learning on Medical Data using Knowledge Distillation with Image Synthesis and Client Model Adaptation.","authors":"Myeongkyun Kang, Philip Chikontwe, Soopil Kim, Kyong Hwan Jin, Ehsan Adeli, Kilian M Pohl, Sang Hyun Park","doi":"10.1007/978-3-031-43895-0_49","DOIUrl":null,"url":null,"abstract":"<p><p>One-shot federated learning (FL) has emerged as a promising solution in scenarios where multiple communication rounds are not practical. Notably, as feature distributions in medical data are less discriminative than those of natural images, robust global model training with FL is non-trivial and can lead to overfitting. To address this issue, we propose a novel one-shot FL framework leveraging Image Synthesis and Client model Adaptation (FedISCA) with knowledge distillation (KD). To prevent overfitting, we generate diverse synthetic images ranging from random noise to realistic images. This approach (i) alleviates data privacy concerns and (ii) facilitates robust global model training using KD with decentralized client models. To mitigate domain disparity in the early stages of synthesis, we design noise-adapted client models where batch normalization statistics on random noise (synthetic images) are updated to enhance KD. Lastly, the global model is trained with both the original and noise-adapted client models via KD and synthetic images. This process is repeated till global model convergence. Extensive evaluation of this design on five small- and three large-scale medical image classification datasets reveals superior accuracy over prior methods. Code is available at https://github.com/myeongkyunkang/FedISCA.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781197/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43895-0_49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One-shot federated learning (FL) has emerged as a promising solution in scenarios where multiple communication rounds are not practical. Notably, as feature distributions in medical data are less discriminative than those of natural images, robust global model training with FL is non-trivial and can lead to overfitting. To address this issue, we propose a novel one-shot FL framework leveraging Image Synthesis and Client model Adaptation (FedISCA) with knowledge distillation (KD). To prevent overfitting, we generate diverse synthetic images ranging from random noise to realistic images. This approach (i) alleviates data privacy concerns and (ii) facilitates robust global model training using KD with decentralized client models. To mitigate domain disparity in the early stages of synthesis, we design noise-adapted client models where batch normalization statistics on random noise (synthetic images) are updated to enhance KD. Lastly, the global model is trained with both the original and noise-adapted client models via KD and synthetic images. This process is repeated till global model convergence. Extensive evaluation of this design on five small- and three large-scale medical image classification datasets reveals superior accuracy over prior methods. Code is available at https://github.com/myeongkyunkang/FedISCA.

利用知识蒸馏、图像合成和客户端模型适配对医疗数据进行一次性联合学习。
在无法进行多轮通信的情况下,一次联合学习(FL)成为一种很有前途的解决方案。值得注意的是,由于医疗数据中的特征分布不如自然图像中的特征分布那么具有辨别性,因此使用联合学习进行稳健的全局模型训练并非易事,而且可能导致过拟合。为了解决这个问题,我们提出了一种新颖的单次 FL 框架,利用图像合成和客户端模型适配(FedISCA)与知识提炼(KD)。为了防止过拟合,我们生成了从随机噪音到真实图像的各种合成图像。这种方法(i)减轻了对数据隐私的担忧,(ii)有利于利用分散式客户端模型的知识蒸馏功能进行稳健的全局模型训练。为了在合成的早期阶段减轻领域差异,我们设计了适应噪声的客户端模型,对随机噪声(合成图像)进行批量归一化统计更新,以增强 KD。最后,通过 KD 和合成图像,使用原始和噪声适配客户端模型训练全局模型。这一过程不断重复,直到全局模型收敛。在五个小型和三个大型医学图像分类数据集上对这一设计进行的广泛评估显示,其准确性优于之前的方法。代码见 https://github.com/myeongkyunkang/FedISCA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信