{"title":"Counting Arcs in $${\\mathbb {F}}_q^2$$","authors":"Krishnendu Bhowmick, Oliver Roche-Newton","doi":"10.1007/s00454-023-00622-w","DOIUrl":null,"url":null,"abstract":"<p>An arc in <span>\\(\\mathbb F_q^2\\)</span> is a set <span>\\(P \\subset \\mathbb F_q^2\\)</span> such that no three points of <i>P</i> are collinear. We use the method of hypergraph containers to prove several counting results for arcs. Let <span>\\({\\mathcal {A}}(q)\\)</span> denote the family of all arcs in <span>\\(\\mathbb F_q^2\\)</span>. Our main result is the bound </p><span>$$\\begin{aligned} |{\\mathcal {A}}(q)| \\le 2^{(1+o(1))q}. \\end{aligned}$$</span><p>This matches, up to the factor hidden in the <i>o</i>(1) notation, the trivial lower bound that comes from considering all subsets of an arc of size <i>q</i>. We also give upper bounds for the number of arcs of a fixed (large) size. Let <span>\\(k \\ge q^{2/3}(\\log q)^3\\)</span>, and let <span>\\({\\mathcal {A}}(q,k)\\)</span> denote the family of all arcs in <span>\\(\\mathbb F_q^2\\)</span> with cardinality <i>k</i>. We prove that </p><span>$$\\begin{aligned} |{\\mathcal {A}}(q,k)| \\le \\left( {\\begin{array}{c}(1+o(1))q\\\\ k\\end{array}}\\right) . \\end{aligned}$$</span><p>This result improves a bound of Roche-Newton and Warren [12]. A nearly matching lower bound </p><span>$$\\begin{aligned} |{\\mathcal {A}}(q,k)| \\ge \\left( {\\begin{array}{c}q\\\\ k\\end{array}}\\right) \\end{aligned}$$</span><p>follows by considering all subsets of size <i>k</i> of an arc of size <i>q</i>.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"27 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00622-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
An arc in \(\mathbb F_q^2\) is a set \(P \subset \mathbb F_q^2\) such that no three points of P are collinear. We use the method of hypergraph containers to prove several counting results for arcs. Let \({\mathcal {A}}(q)\) denote the family of all arcs in \(\mathbb F_q^2\). Our main result is the bound
This matches, up to the factor hidden in the o(1) notation, the trivial lower bound that comes from considering all subsets of an arc of size q. We also give upper bounds for the number of arcs of a fixed (large) size. Let \(k \ge q^{2/3}(\log q)^3\), and let \({\mathcal {A}}(q,k)\) denote the family of all arcs in \(\mathbb F_q^2\) with cardinality k. We prove that
期刊介绍:
Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.