Zhixin Zhao, Yanghang Gong, Huilin Zhou, Yulong Cao
{"title":"Average effective subcarrier-domain sparse representation approach for target information estimation in CP-OFDM-based passive bistatic radar","authors":"Zhixin Zhao, Yanghang Gong, Huilin Zhou, Yulong Cao","doi":"10.1186/s13634-023-01106-y","DOIUrl":null,"url":null,"abstract":"<p>Although some existing sparse representation (SR) methods are robust for target detection in passive bistatic radar (PBR), they still face the challenges of high computational complexity and poor detection performance for extremely low-signal-to-clutter ratio (SCR) target. So, an average effective subcarrier (AES)-domain sparse representation approach is investigated in this paper. Firstly, the AES-based SR model is proposed to solve the problem of high computational complexity, which is established by utilizing the sparseness of the orthogonal frequency-division multiplexing (OFDM) with cyclic prefix (CP) signals in each effective subcarrier domain. Then, considering the difficulty of detecting extremely low-SCR targets, clutter cancellation is implemented by the SR-based optimization model. Two AES-S algorithms, namely AES-S-based clutter cancellation in the time domain (AES-S-T) and AES-S-based clutter cancellation in the subcarrier domain (AES-S-C), are proposed, and the computational complexity is further reduced. Finally, extensive simulation and experimental results illustrate that the proposed algorithms have good detection performance and low computational complexity in PBR detection scene.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"84 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-023-01106-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Although some existing sparse representation (SR) methods are robust for target detection in passive bistatic radar (PBR), they still face the challenges of high computational complexity and poor detection performance for extremely low-signal-to-clutter ratio (SCR) target. So, an average effective subcarrier (AES)-domain sparse representation approach is investigated in this paper. Firstly, the AES-based SR model is proposed to solve the problem of high computational complexity, which is established by utilizing the sparseness of the orthogonal frequency-division multiplexing (OFDM) with cyclic prefix (CP) signals in each effective subcarrier domain. Then, considering the difficulty of detecting extremely low-SCR targets, clutter cancellation is implemented by the SR-based optimization model. Two AES-S algorithms, namely AES-S-based clutter cancellation in the time domain (AES-S-T) and AES-S-based clutter cancellation in the subcarrier domain (AES-S-C), are proposed, and the computational complexity is further reduced. Finally, extensive simulation and experimental results illustrate that the proposed algorithms have good detection performance and low computational complexity in PBR detection scene.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.