Stamping process analysis in an industrial plant and its limitations to obtain an industrializable Continuous Twin

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING
Ivan Peinado-Asensi, Nicolás Montés, Eduardo García
{"title":"Stamping process analysis in an industrial plant and its limitations to obtain an industrializable Continuous Twin","authors":"Ivan Peinado-Asensi,&nbsp;Nicolás Montés,&nbsp;Eduardo García","doi":"10.1007/s12289-023-01808-6","DOIUrl":null,"url":null,"abstract":"<div><p>This article aims to define the problem of the development of a “Continuous Twin” in any stamping process installed in an industry. A “Continuous Twin” is a modeling concept using the information available in both worlds, the virtual twin (simulation) and the digital twin (real-time data) of the process. There is currently a trend in the industry related to IIoT (Industrial Internet of Things) and linked to Industry 4.0. IIoT is the collection of sensors, instruments and autonomous devices connected through the internet to industrial applications. However, filling with sensors the entire industry and channelling all that information through industrial networks is a utopia. In our previous works, a new concept for generating industrializable IIoT applications has been presented, <i>Industrializable Industrial Internet of Things</i> (<i>I3oT</i>). The purpose of the <i>I3oT</i> is using the installations available in factories to develop IIoT applications from them. This article aims to analyse all available and accessible information from the parameters accessible from the stamping process PLC, material properties, FLD, to the measurement of the operators corrections after detecting part failures. This is information that could be included in the model in order to develop an industrializable “Continuous Twin”.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01808-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

This article aims to define the problem of the development of a “Continuous Twin” in any stamping process installed in an industry. A “Continuous Twin” is a modeling concept using the information available in both worlds, the virtual twin (simulation) and the digital twin (real-time data) of the process. There is currently a trend in the industry related to IIoT (Industrial Internet of Things) and linked to Industry 4.0. IIoT is the collection of sensors, instruments and autonomous devices connected through the internet to industrial applications. However, filling with sensors the entire industry and channelling all that information through industrial networks is a utopia. In our previous works, a new concept for generating industrializable IIoT applications has been presented, Industrializable Industrial Internet of Things (I3oT). The purpose of the I3oT is using the installations available in factories to develop IIoT applications from them. This article aims to analyse all available and accessible information from the parameters accessible from the stamping process PLC, material properties, FLD, to the measurement of the operators corrections after detecting part failures. This is information that could be included in the model in order to develop an industrializable “Continuous Twin”.

Abstract Image

工业厂房中的冲压工艺分析及其在获得可工业化的连续孪晶方面的局限性
本文旨在定义在任何工业冲压工艺中开发 "连续孪生 "的问题。连续孪生 "是一种建模概念,它利用虚拟孪生(模拟)和数字孪生(实时数据)两个世界中的信息。目前,工业领域有一种与 IIoT(工业物联网)相关并与工业 4.0 相联系的趋势。IIoT 是通过互联网与工业应用相连的传感器、仪器和自主设备的集合。然而,在整个工业中布满传感器并通过工业网络传输所有信息只是一个乌托邦。在我们之前的工作中,提出了一个生成可工业化的 IIoT 应用的新概念,即可工业化的工业物联网(I3oT)。I3oT 的目的是利用工厂中的现有装置来开发 IIoT 应用程序。本文旨在分析所有可用和可访问的信息,包括冲压过程 PLC、材料属性、FLD 等可访问的参数,以及操作员在检测到零件故障后进行修正的测量结果。这些信息都可纳入模型,以开发可工业化的 "连续双胞胎"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信