Fractional Derivative Description of the Bloch Space

IF 1 3区 数学 Q1 MATHEMATICS
{"title":"Fractional Derivative Description of the Bloch Space","authors":"","doi":"10.1007/s11118-023-10119-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We establish new characterizations of the Bloch space <span> <span>\\(\\mathcal {B}\\)</span> </span> which include descriptions in terms of classical fractional derivatives. Being precise, for an analytic function <span> <span>\\(f(z)=\\sum _{n=0}^\\infty \\widehat{f}(n) z^n\\)</span> </span> in the unit disc <span> <span>\\(\\mathbb {D}\\)</span> </span>, we define the fractional derivative <span> <span>\\( D^{\\mu }(f)(z)=\\sum \\limits _{n=0}^{\\infty } \\frac{\\widehat{f}(n)}{\\mu _{2n+1}} z^n \\)</span> </span> induced by a radial weight <span> <span>\\(\\mu \\)</span> </span>, where <span> <span>\\(\\mu _{2n+1}=\\int _0^1 r^{2n+1}\\mu (r)\\,dr\\)</span> </span> are the odd moments of <span> <span>\\(\\mu \\)</span> </span>. Then, we consider the space <span> <span>\\( \\mathcal {B}^\\mu \\)</span> </span> of analytic functions <em>f</em> in <span> <span>\\(\\mathbb {D}\\)</span> </span> such that <span> <span>\\(\\Vert f\\Vert _{\\mathcal {B}^\\mu }=\\sup _{z\\in \\mathbb {D}} \\widehat{\\mu }(z)|D^\\mu (f)(z)|&lt;\\infty \\)</span> </span>, where <span> <span>\\(\\widehat{\\mu }(z)=\\int _{|z|}^1 \\mu (s)\\,ds\\)</span> </span>. We prove that <span> <span>\\(\\mathcal {B}^\\mu \\)</span> </span> is continously embedded in <span> <span>\\(\\mathcal {B}\\)</span> </span> for any radial weight <span> <span>\\(\\mu \\)</span> </span>, and <span> <span>\\(\\mathcal {B}=\\mathcal {B}^\\mu \\)</span> </span> if and only if <span> <span>\\(\\mu \\in \\mathcal {D}=\\widehat{\\mathcal {D}}\\cap \\check{\\mathcal {D}}\\)</span> </span>. A radial weight <span> <span>\\(\\mu \\in \\widehat{\\mathcal {D}}\\)</span> </span> if <span> <span>\\(\\sup _{0\\le r&lt;1}\\frac{\\widehat{\\mu }(r)}{\\widehat{\\mu }\\left( \\frac{1+r}{2}\\right) }&lt;\\infty \\)</span> </span> and a radial weight <span> <span>\\(\\mu \\in \\check{\\mathcal {D}}\\)</span> </span> if there exist <span> <span>\\(K=K(\\mu )&gt;1\\)</span> </span> such that <span> <span>\\(\\inf _{0\\le r&lt;1}\\frac{\\widehat{\\mu }(r)}{\\widehat{\\mu }\\left( 1-\\frac{1-r}{K}\\right) }&gt;1.\\)</span> </span></p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"28 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-023-10119-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish new characterizations of the Bloch space \(\mathcal {B}\) which include descriptions in terms of classical fractional derivatives. Being precise, for an analytic function \(f(z)=\sum _{n=0}^\infty \widehat{f}(n) z^n\) in the unit disc \(\mathbb {D}\) , we define the fractional derivative \( D^{\mu }(f)(z)=\sum \limits _{n=0}^{\infty } \frac{\widehat{f}(n)}{\mu _{2n+1}} z^n \) induced by a radial weight \(\mu \) , where \(\mu _{2n+1}=\int _0^1 r^{2n+1}\mu (r)\,dr\) are the odd moments of \(\mu \) . Then, we consider the space \( \mathcal {B}^\mu \) of analytic functions f in \(\mathbb {D}\) such that \(\Vert f\Vert _{\mathcal {B}^\mu }=\sup _{z\in \mathbb {D}} \widehat{\mu }(z)|D^\mu (f)(z)|<\infty \) , where \(\widehat{\mu }(z)=\int _{|z|}^1 \mu (s)\,ds\) . We prove that \(\mathcal {B}^\mu \) is continously embedded in \(\mathcal {B}\) for any radial weight \(\mu \) , and \(\mathcal {B}=\mathcal {B}^\mu \) if and only if \(\mu \in \mathcal {D}=\widehat{\mathcal {D}}\cap \check{\mathcal {D}}\) . A radial weight \(\mu \in \widehat{\mathcal {D}}\) if \(\sup _{0\le r<1}\frac{\widehat{\mu }(r)}{\widehat{\mu }\left( \frac{1+r}{2}\right) }<\infty \) and a radial weight \(\mu \in \check{\mathcal {D}}\) if there exist \(K=K(\mu )>1\) such that \(\inf _{0\le r<1}\frac{\widehat{\mu }(r)}{\widehat{\mu }\left( 1-\frac{1-r}{K}\right) }>1.\)

布洛赫空间的分数导数描述
摘要 我们建立了布洛赫空间(mathcal {B})的新特征,其中包括经典分数导数的描述。精确地说,对于单位圆盘中的解析函数 \(f(z)=\sum _{n=0}^\infty \widehat{f}(n) z^n\),我们定义了分数导数 \( D^{\mu }(f)(z)=\sum \limits _{n=0}^{\infty }。\frac{\widehat{f}(n)}{\mu _{2n+1}}其中 \(\mu _{2n+1}=\int _0^1 r^{2n+1}\mu (r)\,dr\) 是 \(\mu\) 的奇矩。然后,我们考虑在 \(\mathbb {D}\) 中的解析函数 f 的空间 \( \mathcal {B}^\mu \) ,使得 \(\Vert f\Vert _{\mathcal {B}^\mu }=\sup _{z\in \mathbb {D}}.|D^\mu (f)(z)|<\infty\)其中 (\widehat{\mu }(z)=\int _{|z|}^1 \mu (s)\,ds\) 。我们证明对于任意径向权重 (), ((\mathcal {B}^\mu \)是连续嵌入在 ((\mathcal {B}\) 、且只有当且仅当 \(\mathcal {D}=\widehat\mathcal {D}}\cap\check\mathcal {D}}) .A radial weight \(\mu \in \widehat\mathcal {D}}\) if \(\sup _{0\le r<1}\frac{widehat\{mu }(r)}{\widehat\{mu }left( \frac{1+r}{2}\right) }<;\如果存在 \(K=K(\mu )>1\) such that \(\inf _{0\le r<1}\frac\{widehat\{mu }(r)}{widehat\{mu }\left( 1-\frac{1-r}{K}\right) }>1.\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信