{"title":"Normal forms for principal Poisson Hamiltonian spaces","authors":"Pedro Frejlich , Ioan Mărcuţ","doi":"10.1016/j.indag.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>We prove a normal form theorem for principal </span>Hamiltonian<span><span> actions on Poisson manifolds<span> around the zero locus of the moment map. The local model is the generalization to Poisson geometry of the classical minimal coupling construction from </span></span>symplectic geometry of Sternberg and Weinstein. Further, we show that the result implies that the quotient Poisson manifold is linearizable, and we show how to extend the normal form to other values of the moment map.</span></p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 2","pages":"Pages 288-316"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove a normal form theorem for principal Hamiltonian actions on Poisson manifolds around the zero locus of the moment map. The local model is the generalization to Poisson geometry of the classical minimal coupling construction from symplectic geometry of Sternberg and Weinstein. Further, we show that the result implies that the quotient Poisson manifold is linearizable, and we show how to extend the normal form to other values of the moment map.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.