{"title":"The depletion of star-forming gas by AGN activity in radio Sources","authors":"S. J. Curran","doi":"10.1017/pasa.2024.1","DOIUrl":null,"url":null,"abstract":"Cold, neutral interstellar gas, the reservoir for star formation, is traced through the absorption of the 21-centimetre continuum radiation by neutral hydrogen (H I). Although detected in one hundred cases in the host galaxies of distant radio sources, only recently have column densities approaching the maximum value observed in Lyman-a absorption systems (NHI ∼ 1022 cm−2) been found. Here we explore the implications these have for the hypothesis that the detection rate of H I absorption is dominated by ionising photon rate from the active galactic nucleus (AGN). We find, with the addition all of the current searches for H I absorption at z ≥0.1, a strong correlation between the H I absorption strength and the ionising photon rate, with the maximum value at which H I is detected (QHI = 2.9 ×1056 ionising photons s−1) remaining close to the theoretical value in which all of the neutral gas would be ionised in a large spiral galaxy. We also rule out other effects (excitation by the radio continuum and changing gas properties), as the dominant cause for the decrease in detection rate with redshift. Furthermore, from the maximum theoretical column density, we find that the five high column density systems have spin temperatures close to those of the Milky Way (Tspin ≲ 300 K), whereas, from our model of a gaseous galactic disk, the H I detection at QH I = 2.9 ×1056 s−1 yields Tspin ∼ 10 000 K, consistent with the gas being highly ionised.","PeriodicalId":20753,"journal":{"name":"Publications of the Astronomical Society of Australia","volume":"28 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of Australia","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/pasa.2024.1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cold, neutral interstellar gas, the reservoir for star formation, is traced through the absorption of the 21-centimetre continuum radiation by neutral hydrogen (H I). Although detected in one hundred cases in the host galaxies of distant radio sources, only recently have column densities approaching the maximum value observed in Lyman-a absorption systems (NHI ∼ 1022 cm−2) been found. Here we explore the implications these have for the hypothesis that the detection rate of H I absorption is dominated by ionising photon rate from the active galactic nucleus (AGN). We find, with the addition all of the current searches for H I absorption at z ≥0.1, a strong correlation between the H I absorption strength and the ionising photon rate, with the maximum value at which H I is detected (QHI = 2.9 ×1056 ionising photons s−1) remaining close to the theoretical value in which all of the neutral gas would be ionised in a large spiral galaxy. We also rule out other effects (excitation by the radio continuum and changing gas properties), as the dominant cause for the decrease in detection rate with redshift. Furthermore, from the maximum theoretical column density, we find that the five high column density systems have spin temperatures close to those of the Milky Way (Tspin ≲ 300 K), whereas, from our model of a gaseous galactic disk, the H I detection at QH I = 2.9 ×1056 s−1 yields Tspin ∼ 10 000 K, consistent with the gas being highly ionised.
期刊介绍:
Publications of the Astronomical Society of Australia (PASA) publishes new and significant research in astronomy and astrophysics. PASA covers a wide range of topics within astronomy, including multi-wavelength observations, theoretical modelling, computational astronomy and visualisation. PASA also maintains its heritage of publishing results on southern hemisphere astronomy and on astronomy with Australian facilities.
PASA publishes research papers, review papers and special series on topical issues, making use of expert international reviewers and an experienced Editorial Board. As an electronic-only journal, PASA publishes paper by paper, ensuring a rapid publication rate. There are no page charges. PASA''s Editorial Board approve a certain number of papers per year to be published Open Access without a publication fee.