Nelson Conuclei and Nuclei: The Twist Construction Beyond Involutivity

Pub Date : 2024-01-09 DOI:10.1007/s11225-023-10088-9
{"title":"Nelson Conuclei and Nuclei: The Twist Construction Beyond Involutivity","authors":"","doi":"10.1007/s11225-023-10088-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Recent work by Busaniche, Galatos and Marcos introduced a very general twist construction, based on the notion of <em>conucleus</em>, which subsumes most existing approaches. In the present paper we extend this framework one step further, so as to allow us to construct and represent algebras which possess a negation that is not necessarily involutive. Our aim is to capture the main properties of the largest class that admits such a representation, as well as to be able to recover the well-known cases—such as <em>(quasi-)Nelson algebras</em> and <em>(quasi-)N4-lattices</em>—as particular instances of the general construction. We pursue two approaches, one that directly generalizes the classical Rasiowa construction for Nelson algebras, and an alternative one that allows us to study twist-algebras within the theory of residuated lattices.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-023-10088-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent work by Busaniche, Galatos and Marcos introduced a very general twist construction, based on the notion of conucleus, which subsumes most existing approaches. In the present paper we extend this framework one step further, so as to allow us to construct and represent algebras which possess a negation that is not necessarily involutive. Our aim is to capture the main properties of the largest class that admits such a representation, as well as to be able to recover the well-known cases—such as (quasi-)Nelson algebras and (quasi-)N4-lattices—as particular instances of the general construction. We pursue two approaches, one that directly generalizes the classical Rasiowa construction for Nelson algebras, and an alternative one that allows us to study twist-algebras within the theory of residuated lattices.

分享
查看原文
纳尔逊的 "核 "与 "核":超越不可逆性的扭曲构造
摘要 最近由 Busaniche、Galatos 和 Marcos 所做的工作基于 "核 "的概念引入了一个非常通用的扭转构造,它包含了大多数现有的方法。在本文中,我们进一步扩展了这一框架,使我们能够构造和表示具有不一定是非卷积的否定的代数。我们的目标是捕捉允许这种表示的最大类别的主要性质,以及能够恢复众所周知的情况--如(准)纳尔逊代数和(准)N4-网格--作为一般构造的特殊实例。我们采用了两种方法,一种是直接推广纳尔逊代数的经典 Rasiowa 构造,另一种是在残差网格理论中研究扭转代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信