Koszul property of Ulrich bundles and rationality of moduli spaces of stable bundles on Del Pezzo surfaces

Pub Date : 2024-01-09 DOI:10.1007/s00229-023-01530-2
Purnaprajna Bangere, Jayan Mukherjee, Debaditya Raychaudhury
{"title":"Koszul property of Ulrich bundles and rationality of moduli spaces of stable bundles on Del Pezzo surfaces","authors":"Purnaprajna Bangere, Jayan Mukherjee, Debaditya Raychaudhury","doi":"10.1007/s00229-023-01530-2","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\({\\mathscr {E}}\\)</span> be a vector bundle on a smooth projective variety <span>\\(X\\subseteq {\\mathbb {P}}^N\\)</span> that is Ulrich with respect to the hyperplane section <i>H</i>. In this article, we study the Koszul property of <span>\\({\\mathscr {E}}\\)</span>, the slope-semistability of the <i>k</i>-th iterated syzygy bundle <span>\\({\\mathscr {S}}_k({\\mathscr {E}})\\)</span> for all <span>\\(k\\ge 0\\)</span> and rationality of moduli spaces of slope-stable bundles on Del Pezzo surfaces. As a consequence of our study, we show that if <i>X</i> is a Del Pezzo surface of degree <span>\\(d\\ge 4\\)</span>, then any Ulrich bundle <span>\\({\\mathscr {E}}\\)</span> satisfies the Koszul property and is slope-semistable. We also show that, for infinitely many Chern characters <span>\\(\\textbf{v}=(r,c_1, c_2)\\)</span>, the corresponding moduli spaces of slope-stable bundles <span>\\({\\mathfrak {M}}_H(\\textbf{v})\\)</span> when non-empty, are rational, and thereby produce new evidences for a conjecture of Costa and Miró-Roig. As a consequence, we show that the iterated syzygy bundles of Ulrich bundles are dense in these moduli spaces.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-023-01530-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \({\mathscr {E}}\) be a vector bundle on a smooth projective variety \(X\subseteq {\mathbb {P}}^N\) that is Ulrich with respect to the hyperplane section H. In this article, we study the Koszul property of \({\mathscr {E}}\), the slope-semistability of the k-th iterated syzygy bundle \({\mathscr {S}}_k({\mathscr {E}})\) for all \(k\ge 0\) and rationality of moduli spaces of slope-stable bundles on Del Pezzo surfaces. As a consequence of our study, we show that if X is a Del Pezzo surface of degree \(d\ge 4\), then any Ulrich bundle \({\mathscr {E}}\) satisfies the Koszul property and is slope-semistable. We also show that, for infinitely many Chern characters \(\textbf{v}=(r,c_1, c_2)\), the corresponding moduli spaces of slope-stable bundles \({\mathfrak {M}}_H(\textbf{v})\) when non-empty, are rational, and thereby produce new evidences for a conjecture of Costa and Miró-Roig. As a consequence, we show that the iterated syzygy bundles of Ulrich bundles are dense in these moduli spaces.

分享
查看原文
乌尔里希束的科斯祖尔特性和德尔佩佐曲面上稳定束的模空间合理性
让 \({\mathscr {E}}\) 是光滑投影变项 \(X\subseteq {\mathbb {P}}^N\) 上的矢量束,它关于超平面截面 H 是 Ulrich 的。在这篇文章中,我们研究了 \({\mathscr {E}}\) 的 Koszul 属性、对于所有 \(k\ge 0\) 的 k 次迭代对称束 \({\mathscr {S}}_k({\mathscr {E}})\) 的斜率可变性以及 Del Pezzo 曲面上斜率稳定束的模空间的合理性。作为我们研究的结果,我们证明了如果 X 是一个度数为 \(d\ge 4\) 的 Del Pezzo 曲面,那么任何 Ulrich 束 \({\mathscr {E}}\) 都满足科斯祖尔(Koszul)性质,并且是斜坡可稳定的。我们还证明了,对于无限多的车恩特征 \(\textbf{v}=(r,c_1, c_2)\),斜率稳定束的相应模空间 \({\mathfrak{M}}_H(\textbf{v})\)在非空时是有理的,从而为科斯塔和米罗-罗伊格的猜想提供了新证据。因此,我们证明了乌尔里希束的迭代共轭束在这些模空间中是致密的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信