{"title":"A Comparative Biomechanical Analysis of Posterior Lumbar Interbody Fusion Constructs with Four Established Scenarios","authors":"Nitesh Kumar Singh, Nishant Kumar Singh","doi":"10.1615/intjmultcompeng.2023050899","DOIUrl":null,"url":null,"abstract":"Posterior lumbar interbody fusion is a common technique for decompressing the diseased spinal segment. This study aimed to compare the biomechanical effects of four PLIF scenarios. A finite element model of the L3-L4 segment was used to simulate decompression with different scenarios: S1 (PEEK cage), S2 (PEEK cage with graft), S3 (Titanium cage), and S4 (Titanium cage with graft). Range of motion, stress, and micromotion were measured under various loading conditions. S2 demonstrates sufficient stability, reduced micromotion, and lower stress on the adjacent parts of the lumbar segment, indicating that S2 may be a preferred option for posterior lumbar interbody fusion.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/intjmultcompeng.2023050899","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Posterior lumbar interbody fusion is a common technique for decompressing the diseased spinal segment. This study aimed to compare the biomechanical effects of four PLIF scenarios. A finite element model of the L3-L4 segment was used to simulate decompression with different scenarios: S1 (PEEK cage), S2 (PEEK cage with graft), S3 (Titanium cage), and S4 (Titanium cage with graft). Range of motion, stress, and micromotion were measured under various loading conditions. S2 demonstrates sufficient stability, reduced micromotion, and lower stress on the adjacent parts of the lumbar segment, indicating that S2 may be a preferred option for posterior lumbar interbody fusion.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.