Spectral approximation scheme for a hybrid, spin-density Kohn–Sham density-functional theory in an external (nonuniform) magnetic field and a collinear exchange-correlation energy
{"title":"Spectral approximation scheme for a hybrid, spin-density Kohn–Sham density-functional theory in an external (nonuniform) magnetic field and a collinear exchange-correlation energy","authors":"M. Melgaard, V. J. J. Syrjanen","doi":"10.1007/s10910-023-01557-6","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a mathematical justification of a spectral approximation scheme known as spectral binning for the Kohn–Sham spin density-functional theory in the presence of an external (nonuniform) magnetic field and a collinear exchange-correlation energy term. We use an extended density-only formulation for modeling the magnetic system. No current densities enter the description in this formulation, but the particle density is split into different spin components. By restricting the exchange-correlation energy functional to be of a collinear LSDA form, we prove a series of results which enable us to mathematically justify the spectral binning scheme using the method of Gamma-convergence, in conjunction with auxiliary steps involving recasting the electrostatic potentials, justifying the spectral approximation by making a spectral decomposition of the Hamiltonian and “linearizing\" the latter Hamiltonian.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10910-023-01557-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10910-023-01557-6","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We provide a mathematical justification of a spectral approximation scheme known as spectral binning for the Kohn–Sham spin density-functional theory in the presence of an external (nonuniform) magnetic field and a collinear exchange-correlation energy term. We use an extended density-only formulation for modeling the magnetic system. No current densities enter the description in this formulation, but the particle density is split into different spin components. By restricting the exchange-correlation energy functional to be of a collinear LSDA form, we prove a series of results which enable us to mathematically justify the spectral binning scheme using the method of Gamma-convergence, in conjunction with auxiliary steps involving recasting the electrostatic potentials, justifying the spectral approximation by making a spectral decomposition of the Hamiltonian and “linearizing" the latter Hamiltonian.
期刊介绍:
The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches.
Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.