ResQNets: a residual approach for mitigating barren plateaus in quantum neural networks

IF 5.8 2区 物理与天体物理 Q1 OPTICS
Muhammad Kashif, Saif Al-Kuwari
{"title":"ResQNets: a residual approach for mitigating barren plateaus in quantum neural networks","authors":"Muhammad Kashif,&nbsp;Saif Al-Kuwari","doi":"10.1140/epjqt/s40507-023-00216-8","DOIUrl":null,"url":null,"abstract":"<div><p>The barren plateau problem in quantum neural networks (QNNs) is a significant challenge that hinders the practical success of QNNs. In this paper, we introduce residual quantum neural networks (ResQNets) as a solution to address this problem. ResQNets are inspired by classical residual neural networks and involve splitting the conventional QNN architecture into multiple quantum nodes, each containing its own parameterized quantum circuit, and introducing residual connections between these nodes. Our study demonstrates the efficacy of ResQNets by comparing their performance with that of conventional QNNs and plain quantum neural networks through multiple training experiments and analyzing the cost function landscapes. Our results show that the incorporation of residual connections results in improved training performance. Therefore, we conclude that ResQNets offer a promising solution to overcome the barren plateau problem in QNNs and provide a potential direction for future research in the field of quantum machine learning.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00216-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-023-00216-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The barren plateau problem in quantum neural networks (QNNs) is a significant challenge that hinders the practical success of QNNs. In this paper, we introduce residual quantum neural networks (ResQNets) as a solution to address this problem. ResQNets are inspired by classical residual neural networks and involve splitting the conventional QNN architecture into multiple quantum nodes, each containing its own parameterized quantum circuit, and introducing residual connections between these nodes. Our study demonstrates the efficacy of ResQNets by comparing their performance with that of conventional QNNs and plain quantum neural networks through multiple training experiments and analyzing the cost function landscapes. Our results show that the incorporation of residual connections results in improved training performance. Therefore, we conclude that ResQNets offer a promising solution to overcome the barren plateau problem in QNNs and provide a potential direction for future research in the field of quantum machine learning.

ResQNets:缓解量子神经网络贫瘠高原的剩余方法
量子神经网络(QNN)中的贫瘠高原问题是阻碍 QNN 取得实际成功的一个重大挑战。在本文中,我们引入了残差量子神经网络(ResQNets)作为解决这一问题的方案。ResQNets 受到经典残差神经网络的启发,涉及将传统 QNN 架构拆分成多个量子节点,每个节点包含自己的参数化量子电路,并在这些节点之间引入残差连接。我们的研究通过多次训练实验和成本函数景观分析,比较了 ResQNets 与传统 QNN 和普通量子神经网络的性能,从而证明了 ResQNets 的功效。结果表明,残差连接的加入提高了训练性能。因此,我们得出结论:ResQNets 为克服量子神经网络中的贫瘠高原问题提供了一种有前途的解决方案,并为量子机器学习领域的未来研究提供了一个潜在的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信