Forty-year investigation of wave power in energetic region of Persian Gulf in Iranian territorial waters by using short-term and new long-term stability assessment parameters

IF 1.4 3区 地球科学 Q3 OCEANOGRAPHY
Fouad Salimi, Cyrus Ershadi, Vahid Chegini
{"title":"Forty-year investigation of wave power in energetic region of Persian Gulf in Iranian territorial waters by using short-term and new long-term stability assessment parameters","authors":"Fouad Salimi, Cyrus Ershadi, Vahid Chegini","doi":"10.1007/s13131-022-2110-5","DOIUrl":null,"url":null,"abstract":"<p>The wave power in high potential area of the northern Persian Gulf (near to Iranian coastal areas) is assessed by taking into account the temporal and spatial distributions of wave power for a period of forty years. For this purpose, assimilated wind data of European Centre for Medium-Range Weather Forecasting Interim Reanalysis (ERA-Interim), and hydrography data of General Bathymetric Chat of the oceans (GEBCO) are used as SWAN model. Seven locations are investigated in the study area by considering the amount of coefficient of variation, the amount of average annual power, and the short-term and a new long-term (decadal variability index) power stability assessment parameters. The results showed more stability in the eastern parts of the study area and concluded that a narrow line between the point which is in the middle and another point which is in the eastern middle part of the study area may be the best locations for more investigation and the feasibility study for energy converter farms. Also, it is found that the middle part of the study region with about 2.5 kW/m power is the most energetic area. It is concluded that the dominant direction of wave power distribution in all points is the northeast, and this dominant direction has not changed during the forty-year period. It is observed that the mean annual energy increases with a slight slope in the total 40 a, and this increasing trend is more obvious in the fourth decade. Although it is observed that the wave power of the second decade has the most stability and the least variation, the wave power in the fourth decade has the most variation. Moreover, the results showed that the study region’s wave power increase by approximately a mean change rate of 0.027 kW/(m·a); and the maximum change rate of wave power was in the northwest part and the minimum change rate of wave power was in the southeast part which were about 0.036 kW/(m·a) and 0.014 kW/(m·a), respectively.</p>","PeriodicalId":6922,"journal":{"name":"Acta Oceanologica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oceanologica Sinica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13131-022-2110-5","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The wave power in high potential area of the northern Persian Gulf (near to Iranian coastal areas) is assessed by taking into account the temporal and spatial distributions of wave power for a period of forty years. For this purpose, assimilated wind data of European Centre for Medium-Range Weather Forecasting Interim Reanalysis (ERA-Interim), and hydrography data of General Bathymetric Chat of the oceans (GEBCO) are used as SWAN model. Seven locations are investigated in the study area by considering the amount of coefficient of variation, the amount of average annual power, and the short-term and a new long-term (decadal variability index) power stability assessment parameters. The results showed more stability in the eastern parts of the study area and concluded that a narrow line between the point which is in the middle and another point which is in the eastern middle part of the study area may be the best locations for more investigation and the feasibility study for energy converter farms. Also, it is found that the middle part of the study region with about 2.5 kW/m power is the most energetic area. It is concluded that the dominant direction of wave power distribution in all points is the northeast, and this dominant direction has not changed during the forty-year period. It is observed that the mean annual energy increases with a slight slope in the total 40 a, and this increasing trend is more obvious in the fourth decade. Although it is observed that the wave power of the second decade has the most stability and the least variation, the wave power in the fourth decade has the most variation. Moreover, the results showed that the study region’s wave power increase by approximately a mean change rate of 0.027 kW/(m·a); and the maximum change rate of wave power was in the northwest part and the minimum change rate of wave power was in the southeast part which were about 0.036 kW/(m·a) and 0.014 kW/(m·a), respectively.

利用短期和新的长期稳定性评估参数,对伊朗领海波斯湾能量区波浪能进行 40 年调查
通过考虑四十年波浪能的时间和空间分布,评估了波斯湾北部高潜力地区(靠近伊朗沿海地区)的波浪能。为此,SWAN 模型使用了欧洲中期天气预报中心中期再分析(ERA-Interim)的同化风数据和大洋深度图(GEBCO)的水文数据。通过考虑变异系数、年平均功率、短期和新的长期(十年变异指数)功率稳定性评估参数,对研究区域的七个地点进行了调查。结果表明,研究区域东部的稳定性更高,并得出结论,研究区域中部的一点与东部中间的另一点之间的一条窄线可能是进行更多调查和能源转换农场可行性研究的最佳地点。此外,研究还发现,研究区域中部约 2.5 kW/m 的功率是能量最强的区域。结论是,各点波浪功率分布的主导方向均为东北方向,且这一主导方向在四十年间未发生变化。据观测,在总的 40 a 中,年平均能量以轻微的斜率增加,这种增加趋势在第四个十年中更为明显。虽然第二个十年的波浪能最稳定,变化最小,但第四个十年的波浪能变化最大。此外,研究结果表明,研究区域的波浪功率平均变化率约为 0.027 kW/(m-a);西北部波浪功率变化率最大,东南部波浪功率变化率最小,分别约为 0.036 kW/(m-a)和 0.014 kW/(m-a)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Oceanologica Sinica
Acta Oceanologica Sinica 地学-海洋学
CiteScore
2.50
自引率
7.10%
发文量
3884
审稿时长
9 months
期刊介绍: Founded in 1982, Acta Oceanologica Sinica is the official bi-monthly journal of the Chinese Society of Oceanography. It seeks to provide a forum for research papers in the field of oceanography from all over the world. In working to advance scholarly communication it has made the fast publication of high-quality research papers within this field its primary goal. The journal encourages submissions from all branches of oceanography, including marine physics, marine chemistry, marine geology, marine biology, marine hydrology, marine meteorology, ocean engineering, marine remote sensing and marine environment sciences. It publishes original research papers, review articles as well as research notes covering the whole spectrum of oceanography. Special issues emanating from related conferences and meetings are also considered. All papers are subject to peer review and are published online at SpringerLink.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信