{"title":"The structure fault tolerance of burnt pancake networks","authors":"Huifen Ge, Chengfu Ye, Shumin Zhang","doi":"10.1515/math-2023-0154","DOIUrl":null,"url":null,"abstract":"One of the symbolic parameters to measure the fault tolerance of a network is its connectivity. The <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>H</m:mi> </m:math> <jats:tex-math>H</jats:tex-math> </jats:alternatives> </jats:inline-formula>-structure connectivity and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>H</m:mi> </m:math> <jats:tex-math>H</jats:tex-math> </jats:alternatives> </jats:inline-formula>-substructure connectivity extend the classical connectivity and are more practical. For a graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> and its connected subgraph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>H</m:mi> </m:math> <jats:tex-math>H</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>H</m:mi> </m:math> <jats:tex-math>H</jats:tex-math> </jats:alternatives> </jats:inline-formula>-structure connectivity <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>κ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> <m:mo>;</m:mo> <m:mspace width=\"0.33em\" /> <m:mi>H</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\kappa \\left(G;\\hspace{0.33em}H)</jats:tex-math> </jats:alternatives> </jats:inline-formula> (resp. <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>H</m:mi> </m:math> <jats:tex-math>H</jats:tex-math> </jats:alternatives> </jats:inline-formula>-substructure connectivity <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_008.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>κ</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> <m:mo>;</m:mo> <m:mspace width=\"0.33em\" /> <m:mi>H</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\kappa }^{s}\\left(G;\\hspace{0.33em}H)</jats:tex-math> </jats:alternatives> </jats:inline-formula>) of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_009.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the cardinality of a minimum subgraph set such that every element of the set is isomorphic to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_010.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>H</m:mi> </m:math> <jats:tex-math>H</jats:tex-math> </jats:alternatives> </jats:inline-formula> (resp. every element of the set is isomorphic to a connected subgraph of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_011.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>H</m:mi> </m:math> <jats:tex-math>H</jats:tex-math> </jats:alternatives> </jats:inline-formula>) in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_012.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>, whose vertices removal disconnects <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_013.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this article, we investigate the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_014.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>H</m:mi> </m:math> <jats:tex-math>H</jats:tex-math> </jats:alternatives> </jats:inline-formula>-structure connectivity and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_015.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>H</m:mi> </m:math> <jats:tex-math>H</jats:tex-math> </jats:alternatives> </jats:inline-formula>-substructure connectivity of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_016.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> </m:math> <jats:tex-math>n</jats:tex-math> </jats:alternatives> </jats:inline-formula>-dimensional burnt pancake network <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_017.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">BP</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{{\\rm{BP}}}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_018.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>H</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>K</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>K</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:mrow> <m:mo>…</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>K</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>P</m:mi> </m:mrow> <m:mrow> <m:mn>4</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:mrow> <m:mo>…</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>P</m:mi> </m:mrow> <m:mrow> <m:mn>7</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mn>8</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mo>}</m:mo> </m:mrow> </m:math> <jats:tex-math>H\\in \\left\\{{K}_{1},{K}_{1,1},\\ldots ,{K}_{1,n-1},{P}_{4},\\ldots ,{P}_{7},{C}_{8}\\right\\}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0154","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
One of the symbolic parameters to measure the fault tolerance of a network is its connectivity. The HH-structure connectivity and HH-substructure connectivity extend the classical connectivity and are more practical. For a graph GG and its connected subgraph HH, the HH-structure connectivity κ(G;H)\kappa \left(G;\hspace{0.33em}H) (resp. HH-substructure connectivity κs(G;H){\kappa }^{s}\left(G;\hspace{0.33em}H)) of GG is the cardinality of a minimum subgraph set such that every element of the set is isomorphic to HH (resp. every element of the set is isomorphic to a connected subgraph of HH) in GG, whose vertices removal disconnects GG. In this article, we investigate the HH-structure connectivity and HH-substructure connectivity of the nn-dimensional burnt pancake network BPn{{\rm{BP}}}_{n} for each H∈{K1,K1,1,…,K1,n−1,P4,…,P7,C8}H\in \left\{{K}_{1},{K}_{1,1},\ldots ,{K}_{1,n-1},{P}_{4},\ldots ,{P}_{7},{C}_{8}\right\}.
网络连通性是衡量网络容错性的符号参数之一。H H -结构连通性和 H H -子结构连通性是经典连通性的扩展,更加实用。对于一个图 G 和它的连通子图 H H,G 的 H H -结构连通性 κ ( G ; H ) \kappa \left(G;\hspace{0.33em}H)(或者 H H -子结构连通性 κ s ( G ; H ) {\kappa }^{s}\left(G;\hspace{0.33em}H) )G G 的最小子图集的心数,使得该集的每个元素都与 G G 中的 H H 同构(即该集的每个元素都与 H H 的连通子图同构),其顶点移除断开 G G 的连通性。本文将研究 n n 维烧饼网络 BP n {{\rm{BP}}_{n} 中每个 H∈ { K 1 , K 1 , 1 , ... , K 1 , n - 1 , P 4 , ... , P 7 , C 8 } 的 H H 结构连通性和 H H 子结构连通性。} H\left\{{K}_{1},{K}_{1,1},\ldots ,{K}_{1,n-1},{P}_{4},\ldots ,{P}_{7},{C}_{8}\right\} .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.