Intent-oriented Dynamic Interest Modeling for Personalized Web Search

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yutong Bai, Yujia Zhou, Zhicheng Dou, Ji-Rong Wen
{"title":"Intent-oriented Dynamic Interest Modeling for Personalized Web Search","authors":"Yutong Bai, Yujia Zhou, Zhicheng Dou, Ji-Rong Wen","doi":"10.1145/3639817","DOIUrl":null,"url":null,"abstract":"<p>Given a user, a personalized search model relies on her historical behaviors, such as issued queries and their clicked documents, to generate an interest profile and personalize search results accordingly. In interest profiling, most existing personalized search approaches use “static” document representations as the inputs, which do not change with the current search. However, a document is usually long and contains multiple pieces of information, a static fix-length document vector is usually insufficient to represent the important information related to the original query or the current query, and makes the profile noisy and ambiguous. To tackle this problem, we propose building dynamic and intent-oriented document representations which highlight important parts of a document rather than simply encode the entire text. Specifically, we divide each document into multiple passages, and then separately use the original query and the current query to interact with the passages. Thereafter we generate two “dynamic” document representations containing the key information around the historical and the current user intent, respectively. We then profile interest by capturing the interactions between these document representations, the historical queries, and the current query. Experimental results on a real-world search log dataset demonstrate that our model significantly outperforms state-of-the-art personalization methods.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3639817","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a user, a personalized search model relies on her historical behaviors, such as issued queries and their clicked documents, to generate an interest profile and personalize search results accordingly. In interest profiling, most existing personalized search approaches use “static” document representations as the inputs, which do not change with the current search. However, a document is usually long and contains multiple pieces of information, a static fix-length document vector is usually insufficient to represent the important information related to the original query or the current query, and makes the profile noisy and ambiguous. To tackle this problem, we propose building dynamic and intent-oriented document representations which highlight important parts of a document rather than simply encode the entire text. Specifically, we divide each document into multiple passages, and then separately use the original query and the current query to interact with the passages. Thereafter we generate two “dynamic” document representations containing the key information around the historical and the current user intent, respectively. We then profile interest by capturing the interactions between these document representations, the historical queries, and the current query. Experimental results on a real-world search log dataset demonstrate that our model significantly outperforms state-of-the-art personalization methods.

面向意图的个性化网络搜索动态兴趣建模
给定用户后,个性化搜索模型会根据其历史行为(如已发布的查询及其点击的文档)生成兴趣档案,并据此个性化搜索结果。在兴趣分析中,大多数现有的个性化搜索方法都使用 "静态 "文档表示法作为输入,这些表示法不会随当前搜索而改变。然而,文档通常较长,且包含多种信息,固定长度的静态文档向量通常不足以表示与原始查询或当前查询相关的重要信息,从而使兴趣剖析变得嘈杂和模糊。为了解决这个问题,我们建议建立动态的、以意图为导向的文档表示法,突出文档的重要部分,而不是简单地对整个文本进行编码。具体来说,我们将每篇文档分为多个段落,然后分别使用原始查询和当前查询与段落进行交互。之后,我们生成两个 "动态 "文档表征,分别包含与历史和当前用户意图相关的关键信息。然后,我们通过捕捉这些文档表征、历史查询和当前查询之间的交互,对兴趣进行剖析。在真实世界搜索日志数据集上的实验结果表明,我们的模型明显优于最先进的个性化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Information Systems
ACM Transactions on Information Systems 工程技术-计算机:信息系统
CiteScore
9.40
自引率
14.30%
发文量
165
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain: new principled information retrieval models or algorithms with sound empirical validation; observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking; accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques; formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks; development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking; development of computational models of user information preferences and interaction behaviors; creation and analysis of evaluation methodologies for information retrieval and information seeking; or surveys of existing work that propose a significant synthesis. The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信