Instability of a family of examples of harmonic maps

IF 0.6 3区 数学 Q3 MATHEMATICS
Nobumitsu Nakauchi
{"title":"Instability of a family of examples of harmonic maps","authors":"Nobumitsu Nakauchi","doi":"10.1007/s10455-023-09936-7","DOIUrl":null,"url":null,"abstract":"<div><p>The radial map <i>u</i>(<i>x</i>) <span>\\(=\\)</span> <span>\\(\\frac{x}{\\Vert x\\Vert }\\)</span> is a well-known example of a harmonic map from <span>\\({\\mathbb {R}}^m\\,-\\,\\{0\\}\\)</span> into the spheres <span>\\({\\mathbb {S}}^{m-1}\\)</span> with a point singularity at <i>x</i> <span>\\(=\\)</span> 0. In Nakauchi (Examples Counterexamples 3:100107, 2023), the author constructed recursively a family of harmonic maps <span>\\(u^{(n)}\\)</span> into <span>\\({\\mathbb {S}}^{m^n-1}\\)</span> with a point singularity at the origin <span>\\((n = 1,\\,2,\\ldots )\\)</span>, such that <span>\\(u^{(1)}\\)</span> is the above radial map. It is known that for <i>m</i> <span>\\(\\ge \\)</span> 3, the radial map <span>\\(u^{(1)}\\)</span> is not only <i>stable</i> as a harmonic map but also a <i>minimizer</i> of the energy of harmonic maps. In this paper, we show that for <i>n</i> <span>\\(\\ge \\)</span> 2, <span>\\(u^{(n)}\\)</span> may be <i>unstable</i> as a harmonic map. Indeed we prove that under the assumption <i>n</i> &gt; <span>\\({\\displaystyle \\frac{\\sqrt{3}-1}{2}\\,(m-1)}\\)</span> <span>\\((m \\ge 3\\)</span>, <span>\\(n \\ge 2)\\)</span>, the map <span>\\(u^{(n)}\\)</span> is <i>unstable</i> as a harmonic map. It is remarkable that they are unstable and our result gives many examples of <i>unstable</i> harmonic maps into the spheres with a point singularity at the origin.\n</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09936-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The radial map u(x) \(=\) \(\frac{x}{\Vert x\Vert }\) is a well-known example of a harmonic map from \({\mathbb {R}}^m\,-\,\{0\}\) into the spheres \({\mathbb {S}}^{m-1}\) with a point singularity at x \(=\) 0. In Nakauchi (Examples Counterexamples 3:100107, 2023), the author constructed recursively a family of harmonic maps \(u^{(n)}\) into \({\mathbb {S}}^{m^n-1}\) with a point singularity at the origin \((n = 1,\,2,\ldots )\), such that \(u^{(1)}\) is the above radial map. It is known that for m \(\ge \) 3, the radial map \(u^{(1)}\) is not only stable as a harmonic map but also a minimizer of the energy of harmonic maps. In this paper, we show that for n \(\ge \) 2, \(u^{(n)}\) may be unstable as a harmonic map. Indeed we prove that under the assumption n > \({\displaystyle \frac{\sqrt{3}-1}{2}\,(m-1)}\) \((m \ge 3\), \(n \ge 2)\), the map \(u^{(n)}\) is unstable as a harmonic map. It is remarkable that they are unstable and our result gives many examples of unstable harmonic maps into the spheres with a point singularity at the origin.

谐波映射实例族的不稳定性
u(x) \(=\) \(\frac{x}{Vert x\Vert }\) 是一个众所周知的从 \({\mathbb {R}}^m\,-\,\{0\}) 到球面 \({\mathbb {S}}^{m-1}\) 的谐波映射的例子,它在 x \(=\) 0 处有一个点奇点。在 Nakauchi (Examples Counterexamples 3:100107, 2023)中,作者递归地构造了一个谐波映射族 \(u^{(n)}\) into \({\mathbb {S}}^{m^n-1}\) with a point singularity at the origin \((n = 1,\,2,\ldots )\), such that \(u^{(1)}\) is the above radial map.众所周知,对于 m (ge)3,径向映射 \(u^{(1)}\)不仅作为谐波映射是稳定的,而且是谐波映射能量的最小化。在本文中,我们证明了对于 n (\ge\) 2,\(u^{(n)}\) 作为调和映射可能是不稳定的。事实上,我们证明了在假设n > ({displaystyle \frac\{sqrt{3}-1}{2}\,(m-1)}\)\((m \ge 3\), \(n \ge 2)\),映射 \(u^{(n)}\)作为谐波映射是不稳定的。它们是不稳定的,这一点很重要,我们的结果给出了许多不稳定的谐波映射的例子,这些不稳定的谐波映射进入球面,在原点处有一个点奇点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信