Andrew N. Callister, Germano Costa-Neto, Ben P. Bradshaw, Stephen Elms, Jose Crossa, Jeremy T. Brawner
{"title":"Enviromic prediction enables the characterization and mapping of Eucalyptus globulus Labill breeding zones","authors":"Andrew N. Callister, Germano Costa-Neto, Ben P. Bradshaw, Stephen Elms, Jose Crossa, Jeremy T. Brawner","doi":"10.1007/s11295-023-01636-4","DOIUrl":null,"url":null,"abstract":"<p>Genotype-environment interaction is pervasive in forest genetics. Delineation of spatial breeding zones (BZs) is fundamental for accommodating genotype-environment interaction. Here we developed a BZ classification pipeline for the forest tree <i>Eucalyptus globulus</i> in 2 Australian regions based on phenotypic, genomic, and pedigree data, as well on a detailed environmental characterization (“envirotyping”) and spatial mapping of BZs. First, the factor analytic method was used to model additive genetic variance and site–site genetic correlations (<i>r</i><sub><i>B</i></sub>) in stem volume across 48 trials of 126,467 full-sib progeny from 2 separate breeding programs. Thirty-three trials were envirotyped using 145 environmental variables (EVs), involving soil and landscape (71), climate (73), and management (1) EVs. Next, sparse partial least squares-discriminant analysis was used to identify EVs that were required to predict classification of sites into 5 non-exclusive BZ classes based on <i>r</i><sub><i>B</i></sub>. Finally, these BZs were spatially mapped across the West Australian and “Green Triangle” commercial estates by enviromic prediction using EVs for 80 locations and 15 sets of observed climate data to represent temporal variation. The factor analytic model explained 85.9% of estimated additive variance. Our environmental classification system produced within-zone mean <i>r</i><sub>B</sub> between 0.76 and 0.84, which improves upon the existing values of 0.62 for Western Australia and 0.67 for Green Triangle as regional BZs. The delineation of 5 BZ classes provides a powerful framework for increasing genetic gain by matching genotypes to current and predicted future environments.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11295-023-01636-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Genotype-environment interaction is pervasive in forest genetics. Delineation of spatial breeding zones (BZs) is fundamental for accommodating genotype-environment interaction. Here we developed a BZ classification pipeline for the forest tree Eucalyptus globulus in 2 Australian regions based on phenotypic, genomic, and pedigree data, as well on a detailed environmental characterization (“envirotyping”) and spatial mapping of BZs. First, the factor analytic method was used to model additive genetic variance and site–site genetic correlations (rB) in stem volume across 48 trials of 126,467 full-sib progeny from 2 separate breeding programs. Thirty-three trials were envirotyped using 145 environmental variables (EVs), involving soil and landscape (71), climate (73), and management (1) EVs. Next, sparse partial least squares-discriminant analysis was used to identify EVs that were required to predict classification of sites into 5 non-exclusive BZ classes based on rB. Finally, these BZs were spatially mapped across the West Australian and “Green Triangle” commercial estates by enviromic prediction using EVs for 80 locations and 15 sets of observed climate data to represent temporal variation. The factor analytic model explained 85.9% of estimated additive variance. Our environmental classification system produced within-zone mean rB between 0.76 and 0.84, which improves upon the existing values of 0.62 for Western Australia and 0.67 for Green Triangle as regional BZs. The delineation of 5 BZ classes provides a powerful framework for increasing genetic gain by matching genotypes to current and predicted future environments.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.