{"title":"Plastome comparison reveals hotspots of nucleotide diversity and positive selection pressure on accD, matK, psaA and rbcL genes in Smilacaceae","authors":"Geetika Sukhramani, Satish Maurya, Ritesh Kumar Choudhary","doi":"10.1007/s40415-023-00973-x","DOIUrl":null,"url":null,"abstract":"<p>The genus <i>Smilax</i> (Smilacaceae), commonly known as <i>Sarsaparilla,</i> comprises about 262 species with numerous medicinal and economic importance. Due to considerable morphological similarity, <i>Smilax</i> has been recognized as a taxonomically challenging group. In this study, we conducted a comprehensive analysis of the genomic architecture and nucleotide variation within the genus <i>Smilax</i>, comparing the newly sequenced plastome of <i>Smilax zeylanica</i> with ten other plastomes. Our analyses revealed a highly conserved gene structure, order, and orientation across the plastomes studied. Nonetheless, we identified eight highly divergent regions, namely <i>rbcL-accD, petA-psbJ, psaJ-rpl33, ndhC-trnV</i> UAC<i>, accD-psaI, ndhF-rpl32, trnK</i> UUU<i>,</i> and <i>rps16-trnQ</i> UUG. These highly diverse DNA regions could potentially be used as DNA super-barcodes for the precise identification of <i>Smilax</i> species. Furthermore, our study identified four positively selected genes—<i>accD, matK, psaA</i>, and <i>rbcL</i>. We also observed the loss of <i>infA</i> and pseudogenization of <i>ycf15</i> and <i>ycf68</i> genes within Smilacaceae. Additionally, the prediction of RNA editing sites revealed a high level of conservation across the genus <i>Smilax</i>. These findings provide valuable insights into adaptation, evolutionary dynamics, marker development, and barcode validation in <i>Smilax</i>, ultimately enhancing its therapeutic applications.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s40415-023-00973-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The genus Smilax (Smilacaceae), commonly known as Sarsaparilla, comprises about 262 species with numerous medicinal and economic importance. Due to considerable morphological similarity, Smilax has been recognized as a taxonomically challenging group. In this study, we conducted a comprehensive analysis of the genomic architecture and nucleotide variation within the genus Smilax, comparing the newly sequenced plastome of Smilax zeylanica with ten other plastomes. Our analyses revealed a highly conserved gene structure, order, and orientation across the plastomes studied. Nonetheless, we identified eight highly divergent regions, namely rbcL-accD, petA-psbJ, psaJ-rpl33, ndhC-trnV UAC, accD-psaI, ndhF-rpl32, trnK UUU, and rps16-trnQ UUG. These highly diverse DNA regions could potentially be used as DNA super-barcodes for the precise identification of Smilax species. Furthermore, our study identified four positively selected genes—accD, matK, psaA, and rbcL. We also observed the loss of infA and pseudogenization of ycf15 and ycf68 genes within Smilacaceae. Additionally, the prediction of RNA editing sites revealed a high level of conservation across the genus Smilax. These findings provide valuable insights into adaptation, evolutionary dynamics, marker development, and barcode validation in Smilax, ultimately enhancing its therapeutic applications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.