An equivalent circuit approach for remnant thickness evaluation and flaw sizing using pulsed thermography

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, APPLIED
Govind K. Sharma, S Mahadevan, Anish Kumar
{"title":"An equivalent circuit approach for remnant thickness evaluation and flaw sizing using pulsed thermography","authors":"Govind K. Sharma, S Mahadevan, Anish Kumar","doi":"10.1063/5.0166652","DOIUrl":null,"url":null,"abstract":"Active thermography using pulsed heating is a fast and reliable method for detecting flaws in composite and metallic materials. This paper analyzes the temperature decay that occurs immediately after flash heating the front surface of stainless steel specimens as a function of time, based on a novel application of the equivalent circuit approach (ECA). The temperature decay from the front surface is equated to the discharge of a capacitor. The ECA is based on the charging (temperature rise due to flash heating) of a capacitor, followed by its discharge (temperature decay) through a series of resistors (which depends on the conductivity of the material) and capacitance (which depends on the thermal capacitance of the layers) through which the heat is dissipated. The proposed approach analyzes the sequences of temperature data obtained at each pixel location during cooling from a step wedge and a specimen with multiple flat-bottom holes. Time constant maps derived from the analysis are used to ascertain the thickness of the step wedge, detect the flaws, and evaluate the remnant thickness of the flaws. A correlation has been established between the thickness and the time constants. The above approach has been used to estimate the diameter of the flat-bottom holes.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"17 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0166652","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Active thermography using pulsed heating is a fast and reliable method for detecting flaws in composite and metallic materials. This paper analyzes the temperature decay that occurs immediately after flash heating the front surface of stainless steel specimens as a function of time, based on a novel application of the equivalent circuit approach (ECA). The temperature decay from the front surface is equated to the discharge of a capacitor. The ECA is based on the charging (temperature rise due to flash heating) of a capacitor, followed by its discharge (temperature decay) through a series of resistors (which depends on the conductivity of the material) and capacitance (which depends on the thermal capacitance of the layers) through which the heat is dissipated. The proposed approach analyzes the sequences of temperature data obtained at each pixel location during cooling from a step wedge and a specimen with multiple flat-bottom holes. Time constant maps derived from the analysis are used to ascertain the thickness of the step wedge, detect the flaws, and evaluate the remnant thickness of the flaws. A correlation has been established between the thickness and the time constants. The above approach has been used to estimate the diameter of the flat-bottom holes.
利用脉冲热成像技术评估残余厚度和缺陷大小的等效电路方法
利用脉冲加热进行主动热成像是检测复合材料和金属材料缺陷的一种快速可靠的方法。本文基于等效电路方法 (ECA) 的新颖应用,分析了不锈钢试样前表面闪光加热后立即发生的温度衰减与时间的函数关系。前表面的温度衰减等同于电容器的放电。等效电路法基于电容器的充电(闪热导致的温度上升),然后通过一系列电阻(取决于材料的导电性)和电容(取决于各层的热电容)进行放电(温度衰减),热量通过这些电阻和电容散失。所提出的方法分析了从阶梯楔块和带有多个平底孔的试样冷却过程中在每个像素位置获得的温度数据序列。分析得出的时间常数图用于确定阶梯楔的厚度、检测缺陷和评估缺陷的残余厚度。在厚度和时间常数之间建立了相关性。上述方法已用于估算平底孔的直径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Physics
Journal of Applied Physics 物理-物理:应用
CiteScore
5.40
自引率
9.40%
发文量
1534
审稿时长
2.3 months
期刊介绍: The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research. Topics covered in JAP are diverse and reflect the most current applied physics research, including: Dielectrics, ferroelectrics, and multiferroics- Electrical discharges, plasmas, and plasma-surface interactions- Emerging, interdisciplinary, and other fields of applied physics- Magnetism, spintronics, and superconductivity- Organic-Inorganic systems, including organic electronics- Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena- Physics of devices and sensors- Physics of materials, including electrical, thermal, mechanical and other properties- Physics of matter under extreme conditions- Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena- Physics of semiconductors- Soft matter, fluids, and biophysics- Thin films, interfaces, and surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信