Nonparametric estimation of $${\mathbb {P}}(X

Pub Date : 2024-01-08 DOI:10.1007/s00184-023-00941-1
Cao Xuan Phuong, Le Thi Hong Thuy
{"title":"Nonparametric estimation of $${\\mathbb {P}}(X","authors":"Cao Xuan Phuong, Le Thi Hong Thuy","doi":"10.1007/s00184-023-00941-1","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i>, <i>Y</i> be continuous random variables with unknown distributions. The aim of this paper is to study the problem of estimating the probability <span>\\(\\theta := {\\mathbb {P}}(X&lt;Y)\\)</span> based on independent random samples from the distributions of <span>\\(X'\\)</span>, <span>\\(Y'\\)</span>, <span>\\(\\zeta \\)</span> and <span>\\(\\eta \\)</span>, where <span>\\(X' = X + \\zeta \\)</span>, <span>\\(Y' = Y + \\eta \\)</span> and <i>X</i>, <i>Y</i>, <span>\\(\\zeta \\)</span>, <span>\\(\\eta \\)</span> are mutually independent random variables. In this context, <span>\\(\\zeta \\)</span>, <span>\\(\\eta \\)</span> are referred to as measurement errors. We apply the ridge-parameter regularization method to derive a nonparametric estimator for <span>\\(\\theta \\)</span> depending on two parameters. Our estimator is shown to be consistent with respect to mean squared error if the characteristic functions of <span>\\(\\zeta \\)</span>, <span>\\(\\eta \\)</span> only vanish on Lebesgue measure zero sets. Under some further assumptions on the densities of <i>X</i>, <i>Y</i>, <span>\\(\\zeta \\)</span> and <span>\\(\\eta \\)</span>, we obtain some upper and lower bounds on the convergence rate of the estimator. A numerical example is also given to illustrate the efficiency of our method.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-023-00941-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let X, Y be continuous random variables with unknown distributions. The aim of this paper is to study the problem of estimating the probability \(\theta := {\mathbb {P}}(X<Y)\) based on independent random samples from the distributions of \(X'\), \(Y'\), \(\zeta \) and \(\eta \), where \(X' = X + \zeta \), \(Y' = Y + \eta \) and X, Y, \(\zeta \), \(\eta \) are mutually independent random variables. In this context, \(\zeta \), \(\eta \) are referred to as measurement errors. We apply the ridge-parameter regularization method to derive a nonparametric estimator for \(\theta \) depending on two parameters. Our estimator is shown to be consistent with respect to mean squared error if the characteristic functions of \(\zeta \), \(\eta \) only vanish on Lebesgue measure zero sets. Under some further assumptions on the densities of X, Y, \(\zeta \) and \(\eta \), we obtain some upper and lower bounds on the convergence rate of the estimator. A numerical example is also given to illustrate the efficiency of our method.

分享
查看原文
对 $${\mathbb {P}}(X) 的非参数估计
设 X、Y 为未知分布的连续随机变量。本文旨在研究估计概率 \(\theta := {\mathbb {P}}(X<;Y))的独立随机样本,其中 \(X' = X + \zeta \),\(Y' = Y + \eta \),并且 X、Y、\(\zeta \)、\(\eta \)是相互独立的随机变量。在这里,\(\zeta \)、\(\eta \)被称为测量误差。我们应用脊参数正则化方法推导出一个取决于两个参数的 \(\theta \)非参数估计器。如果 \(\zeta \)、\(\eta \)的特征函数仅在 Lebesgue 测量零集上消失,那么我们的估计器在均方误差方面是一致的。在对 X、Y、\(\zeta \)和\(\eta \)密度的一些进一步假设下,我们得到了估计器收敛率的一些上下限。我们还给出了一个数值例子来说明我们方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信