{"title":"Fundamental Limitation of Semantic Communications: Neural Estimation for Rate-Distortion","authors":"Dongxu Li;Jianhao Huang;Chuan Huang;Xiaoqi Qin;Han Zhang;Ping Zhang","doi":"10.23919/JCIN.2023.10387242","DOIUrl":null,"url":null,"abstract":"This paper studies the fundamental limit of semantic communications over the discrete memoryless channel. We consider the scenario to send a semantic source consisting of an observation state and its corresponding semantic state, both of which are recovered at the receiver. To derive the performance limitation, we adopt the semantic rate-distortion function (SRDF) to study the relationship among the minimum compression rate, observation distortion, semantic distortion, and channel capacity. For the case with unknown semantic source distribution, while only a set of the source samples is available, we propose a neural-network-based method by leveraging the generative networks to learn the semantic source distribution. Furthermore, for a special case where the semantic state is a deterministic function of the observation, we design a cascade neural network to estimate the SRDF. For the case with perfectly known semantic source distribution, we propose a general Blahut-Arimoto (BA) algorithm to effectively compute the SRDF. Finally, experimental results validate our proposed algorithms for the scenarios with ideal Gaussian semantic source and some practical datasets.","PeriodicalId":100766,"journal":{"name":"Journal of Communications and Information Networks","volume":"8 4","pages":"303-318"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10387242/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the fundamental limit of semantic communications over the discrete memoryless channel. We consider the scenario to send a semantic source consisting of an observation state and its corresponding semantic state, both of which are recovered at the receiver. To derive the performance limitation, we adopt the semantic rate-distortion function (SRDF) to study the relationship among the minimum compression rate, observation distortion, semantic distortion, and channel capacity. For the case with unknown semantic source distribution, while only a set of the source samples is available, we propose a neural-network-based method by leveraging the generative networks to learn the semantic source distribution. Furthermore, for a special case where the semantic state is a deterministic function of the observation, we design a cascade neural network to estimate the SRDF. For the case with perfectly known semantic source distribution, we propose a general Blahut-Arimoto (BA) algorithm to effectively compute the SRDF. Finally, experimental results validate our proposed algorithms for the scenarios with ideal Gaussian semantic source and some practical datasets.