Fundamental Limitation of Semantic Communications: Neural Estimation for Rate-Distortion

Dongxu Li;Jianhao Huang;Chuan Huang;Xiaoqi Qin;Han Zhang;Ping Zhang
{"title":"Fundamental Limitation of Semantic Communications: Neural Estimation for Rate-Distortion","authors":"Dongxu Li;Jianhao Huang;Chuan Huang;Xiaoqi Qin;Han Zhang;Ping Zhang","doi":"10.23919/JCIN.2023.10387242","DOIUrl":null,"url":null,"abstract":"This paper studies the fundamental limit of semantic communications over the discrete memoryless channel. We consider the scenario to send a semantic source consisting of an observation state and its corresponding semantic state, both of which are recovered at the receiver. To derive the performance limitation, we adopt the semantic rate-distortion function (SRDF) to study the relationship among the minimum compression rate, observation distortion, semantic distortion, and channel capacity. For the case with unknown semantic source distribution, while only a set of the source samples is available, we propose a neural-network-based method by leveraging the generative networks to learn the semantic source distribution. Furthermore, for a special case where the semantic state is a deterministic function of the observation, we design a cascade neural network to estimate the SRDF. For the case with perfectly known semantic source distribution, we propose a general Blahut-Arimoto (BA) algorithm to effectively compute the SRDF. Finally, experimental results validate our proposed algorithms for the scenarios with ideal Gaussian semantic source and some practical datasets.","PeriodicalId":100766,"journal":{"name":"Journal of Communications and Information Networks","volume":"8 4","pages":"303-318"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10387242/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the fundamental limit of semantic communications over the discrete memoryless channel. We consider the scenario to send a semantic source consisting of an observation state and its corresponding semantic state, both of which are recovered at the receiver. To derive the performance limitation, we adopt the semantic rate-distortion function (SRDF) to study the relationship among the minimum compression rate, observation distortion, semantic distortion, and channel capacity. For the case with unknown semantic source distribution, while only a set of the source samples is available, we propose a neural-network-based method by leveraging the generative networks to learn the semantic source distribution. Furthermore, for a special case where the semantic state is a deterministic function of the observation, we design a cascade neural network to estimate the SRDF. For the case with perfectly known semantic source distribution, we propose a general Blahut-Arimoto (BA) algorithm to effectively compute the SRDF. Finally, experimental results validate our proposed algorithms for the scenarios with ideal Gaussian semantic source and some practical datasets.
语义通信的基本限制:速率失真的神经估计
本文研究了离散无记忆信道上语义通信的基本极限。我们考虑的场景是发送一个由观测状态及其相应语义状态组成的语义源,这两个状态都在接收器处恢复。为了得出性能限制,我们采用语义率-失真函数(SRDF)来研究最小压缩率、观测失真、语义失真和信道容量之间的关系。对于语义源分布未知的情况,虽然只有一组源样本可用,但我们提出了一种基于神经网络的方法,利用生成网络来学习语义源分布。此外,对于语义状态是观察结果的确定性函数的特殊情况,我们设计了一种级联神经网络来估计 SRDF。对于完全已知语义源分布的情况,我们提出了一种通用的 Blahut-Arimoto (BA) 算法,以有效计算 SRDF。最后,实验结果验证了我们针对理想高斯语义源场景和一些实际数据集提出的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信