Tingting Zhang;Xuehong Sun;Yanpeng Zhang;Liping Liu
{"title":"Ultra-Wideband Millimeter-Wave Vortex Beam Generation Based on Reflective Pancharatnam-Berry Phase Metasurface","authors":"Tingting Zhang;Xuehong Sun;Yanpeng Zhang;Liping Liu","doi":"10.23919/JCIN.2023.10387246","DOIUrl":null,"url":null,"abstract":"Due to the gradual scarcity of spectrum resources, orbital angular momentum (OAM) technology has been proposed and developed continuously to broaden channel capacity. To solve this problem, some ultra-wideband reflective phase metasurface antennas working in millimeter band are designed to generate high purity vortex waves which carry OAM. Based on the Pancharatnam-Berry (PB) phase concept, the unit cell is composed of a metasurface, dielectric, metal grounding layer. Through the optimization design of the unit structure parameters, the reflected wave efficiency can be as high as 95% when covering 2π rotating phase, which realizes the basic requirements of PB phase concept and the relative bandwidth of 116%. Then the metasurface arrays are arranged according to vortex wave generation formula and phase compensation principle. In the 25 GHz to 35 GHz frequency wide band, integer (l = ±1, ±2, ±3) decimal (l = ±1.5) and high-mode (l = ±8) OAM vortex beams are generated, respectively. The OAM purity analysis shows that the antennas can generate millimeter wave OAM beams with high purity in a wide band range, and with a maximum gain of up to 23.6 dBi.","PeriodicalId":100766,"journal":{"name":"Journal of Communications and Information Networks","volume":"8 4","pages":"349-356"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10387246/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the gradual scarcity of spectrum resources, orbital angular momentum (OAM) technology has been proposed and developed continuously to broaden channel capacity. To solve this problem, some ultra-wideband reflective phase metasurface antennas working in millimeter band are designed to generate high purity vortex waves which carry OAM. Based on the Pancharatnam-Berry (PB) phase concept, the unit cell is composed of a metasurface, dielectric, metal grounding layer. Through the optimization design of the unit structure parameters, the reflected wave efficiency can be as high as 95% when covering 2π rotating phase, which realizes the basic requirements of PB phase concept and the relative bandwidth of 116%. Then the metasurface arrays are arranged according to vortex wave generation formula and phase compensation principle. In the 25 GHz to 35 GHz frequency wide band, integer (l = ±1, ±2, ±3) decimal (l = ±1.5) and high-mode (l = ±8) OAM vortex beams are generated, respectively. The OAM purity analysis shows that the antennas can generate millimeter wave OAM beams with high purity in a wide band range, and with a maximum gain of up to 23.6 dBi.