Predictive path routing algorithm for low-latency traffic in NFV-based experimental testbed

IF 2.9 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Juncal Uriol;Juan Felipe Mogollón;Mikel Serón;Roberto Viola;Ángel Martín;Mikel Zorrilla;Jon Montalbán
{"title":"Predictive path routing algorithm for low-latency traffic in NFV-based experimental testbed","authors":"Juncal Uriol;Juan Felipe Mogollón;Mikel Serón;Roberto Viola;Ángel Martín;Mikel Zorrilla;Jon Montalbán","doi":"10.23919/JCN.2023.000018","DOIUrl":null,"url":null,"abstract":"The growth of network traffic and the rise of new network applications having heterogeneous requirements are stressing the telecommunication infrastructure and pushing network management to undergo profound changes. Network management is becoming a core research area to push the network and its performance to the limits, as it aims at applying dynamic changes across the network nodes to fit the requirements of each specific network traffic or application. Here, solutions and frameworks based on software-defined networking (SDN) and network function virtualization (NFV) facilitate the monitorization and control of both the network infrastructure and the network services running on top of it. This article identifies and analyzes different implemented solutions to perform experiments on network management. In this context, an innovative experimental testbed is described and implemented to allow experimentation. A predictive path routing algorithm is later proposed and tested by designing experiments with specific network topologies and configurations deployed through the testbed. The algorithm exploits predictions on network latency to change the routing rules. Finally, the article identifies the open challenges and missing functions to achieve next-generation network management.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":"25 6","pages":"789-805"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10387279","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10387279/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The growth of network traffic and the rise of new network applications having heterogeneous requirements are stressing the telecommunication infrastructure and pushing network management to undergo profound changes. Network management is becoming a core research area to push the network and its performance to the limits, as it aims at applying dynamic changes across the network nodes to fit the requirements of each specific network traffic or application. Here, solutions and frameworks based on software-defined networking (SDN) and network function virtualization (NFV) facilitate the monitorization and control of both the network infrastructure and the network services running on top of it. This article identifies and analyzes different implemented solutions to perform experiments on network management. In this context, an innovative experimental testbed is described and implemented to allow experimentation. A predictive path routing algorithm is later proposed and tested by designing experiments with specific network topologies and configurations deployed through the testbed. The algorithm exploits predictions on network latency to change the routing rules. Finally, the article identifies the open challenges and missing functions to achieve next-generation network management.
基于 NFV 的实验测试平台中的低延迟流量预测路径路由算法
网络流量的增长和具有异构要求的新网络应用的兴起,给电信基础设施带来了压力,并推动网络管理发生深刻变化。网络管理正成为将网络及其性能推向极致的核心研究领域,因为它的目标是在整个网络节点上应用动态变化,以适应每个特定网络流量或应用的要求。在这方面,基于软件定义网络(SDN)和网络功能虚拟化(NFV)的解决方案和框架促进了对网络基础设施及其上运行的网络服务的监控。本文确定并分析了用于进行网络管理实验的不同实施方案。在此背景下,描述并实施了一个创新的实验测试平台,以便进行实验。随后提出了一种预测性路径路由算法,并通过设计实验对测试平台部署的特定网络拓扑和配置进行了测试。该算法利用对网络延迟的预测来改变路由规则。最后,文章指出了实现下一代网络管理所面临的挑战和缺失的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
5.60%
发文量
66
审稿时长
14.4 months
期刊介绍: The JOURNAL OF COMMUNICATIONS AND NETWORKS is published six times per year, and is committed to publishing high-quality papers that advance the state-of-the-art and practical applications of communications and information networks. Theoretical research contributions presenting new techniques, concepts, or analyses, applied contributions reporting on experiences and experiments, and tutorial expositions of permanent reference value are welcome. The subjects covered by this journal include all topics in communication theory and techniques, communication systems, and information networks. COMMUNICATION THEORY AND SYSTEMS WIRELESS COMMUNICATIONS NETWORKS AND SERVICES.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信