A pure Stokes approach for coupling fluid flow with porous media flow

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED
Modesar Shakoor, Chung Hae Park
{"title":"A pure Stokes approach for coupling fluid flow with porous media flow","authors":"Modesar Shakoor,&nbsp;Chung Hae Park","doi":"10.1016/j.finel.2023.104106","DOIUrl":null,"url":null,"abstract":"<div><p>Most numerical approaches for coupling fluid flow with porous media<span><span> flow rely either on Stokes equations in the fluid part of the domain and Darcy’s law in the porous part, or on Brinkman’s equation. In both cases, difficulties arise at the boundary between the two parts because the equations used in the porous part are not of Stokes type. In this paper, an alternative to Darcy’s law is proposed for modeling </span>flows in porous media<span>. This alternative relies on equations of Stokes type where the permeability tensor is replaced by force and stress derivative tensors. Numerical procedures are presented to compute these tensors from simulations at pore scale. Simulations in domains containing both fluid and porous parts are finally conducted simply assuming continuity of velocity and pressure and hence without imposing any condition at the boundary between the two parts. Results show that the proposed method is accurate and hence a promising alternative to Darcy’s law for problems involving both fluid and porous parts.</span></span></p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X23001993","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Most numerical approaches for coupling fluid flow with porous media flow rely either on Stokes equations in the fluid part of the domain and Darcy’s law in the porous part, or on Brinkman’s equation. In both cases, difficulties arise at the boundary between the two parts because the equations used in the porous part are not of Stokes type. In this paper, an alternative to Darcy’s law is proposed for modeling flows in porous media. This alternative relies on equations of Stokes type where the permeability tensor is replaced by force and stress derivative tensors. Numerical procedures are presented to compute these tensors from simulations at pore scale. Simulations in domains containing both fluid and porous parts are finally conducted simply assuming continuity of velocity and pressure and hence without imposing any condition at the boundary between the two parts. Results show that the proposed method is accurate and hence a promising alternative to Darcy’s law for problems involving both fluid and porous parts.

流体流动与多孔介质流动耦合的纯斯托克斯方法
大多数流体流动与多孔介质流动耦合的数值计算方法要么依赖于域中流体部分的斯托克斯方程和多孔部分的达西定律,要么依赖于布林克曼方程。在这两种情况下,两部分之间的边界都会出现困难,因为多孔部分使用的方程不是斯托克斯类型的。本文提出了达西定律的替代方案,用于模拟多孔介质中的流动。这种替代方法依赖于斯托克斯类型的方程,其中渗透张量由力和应力导数张量代替。本文介绍了根据孔隙尺度模拟计算这些张量的数值程序。最后,在包含流体和多孔部分的域中进行模拟,只需假定速度和压力的连续性,因此无需在两部分之间的边界施加任何条件。结果表明,所提出的方法是准确的,因此对于涉及流体和多孔部分的问题,它是达西定律的一个很有前途的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信