A normal line congruence and minimal ruled Lagrangian submanifolds in CPn

IF 0.6 4区 数学 Q3 MATHEMATICS
Jong Taek Cho , Makoto Kimura
{"title":"A normal line congruence and minimal ruled Lagrangian submanifolds in CPn","authors":"Jong Taek Cho ,&nbsp;Makoto Kimura","doi":"10.1016/j.difgeo.2023.102099","DOIUrl":null,"url":null,"abstract":"<div><p><span>We characterize Lagrangian </span>submanifolds<span><span> in complex projective space for which each parallel submanifold along normal geodesics with respect to a </span>unit normal vector field<span> is Lagrangian, by using a normal line congruence of the Lagrangian submanifold to complex 2-plane Grassmannian and quaternionic Kähler structure. As a special case, we can construct minimal ruled Lagrangian submanifolds in complex projective space from an austere hypersurface in sphere with non-vanishing Gauss-Kronecker curvature.</span></span></p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102099"},"PeriodicalIF":0.6000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523001250","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We characterize Lagrangian submanifolds in complex projective space for which each parallel submanifold along normal geodesics with respect to a unit normal vector field is Lagrangian, by using a normal line congruence of the Lagrangian submanifold to complex 2-plane Grassmannian and quaternionic Kähler structure. As a special case, we can construct minimal ruled Lagrangian submanifolds in complex projective space from an austere hypersurface in sphere with non-vanishing Gauss-Kronecker curvature.

CPn 中的法线全等和最小规则拉格朗日子平面
我们利用拉格朗日子平面与复二平面格拉斯曼和四元凯勒结构的法线全等,描述了复投影空间中的拉格朗日子平面的特征,其中每个平行于单位法向量场的法线大地线子平面都是拉格朗日子平面。作为一种特例,我们可以在复投影空间中,从球面中具有非消失高斯-克朗内克曲率的朴素超曲面构造最小规则的拉格朗日子平面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信