Numerical treatment for some abstract degenerate second-order evolutionary problem

IF 1.4 Q2 MATHEMATICS, APPLIED
Ramiro Acevedo , Christian Gómez , Paulo Navia
{"title":"Numerical treatment for some abstract degenerate second-order evolutionary problem","authors":"Ramiro Acevedo ,&nbsp;Christian Gómez ,&nbsp;Paulo Navia","doi":"10.1016/j.rinam.2024.100431","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses the numerical analysis of a class of a degenerate second-order evolution equations. We employ a finite element method for spatial discretization and a family of implicit finite difference schemes for time discretization. Introducing a stabilization parameter, denoted by <span><math><mi>θ</mi></math></span>, we propose a well-posed fully-discrete scheme. Sufficient conditions for its well-posedness and for quasi-optimal error estimates are established. The abstract theory is illustrated through the application to the degenerate wave equation, and numerical results validate our theoretical findings.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"21 ","pages":"Article 100431"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000013/pdfft?md5=3f96f00336f77b02944f9039ae3edf68&pid=1-s2.0-S2590037424000013-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the numerical analysis of a class of a degenerate second-order evolution equations. We employ a finite element method for spatial discretization and a family of implicit finite difference schemes for time discretization. Introducing a stabilization parameter, denoted by θ, we propose a well-posed fully-discrete scheme. Sufficient conditions for its well-posedness and for quasi-optimal error estimates are established. The abstract theory is illustrated through the application to the degenerate wave equation, and numerical results validate our theoretical findings.

某些抽象退化二阶进化问题的数值处理
本文针对一类退化二阶演化方程进行数值分析。我们采用有限元方法进行空间离散化,采用隐式有限差分方案系列进行时间离散化。通过引入一个稳定参数(用 θ 表示),我们提出了一种假设良好的全离散方案。我们建立了该方案的充分条件和准最优误差估计。通过对退化波方程的应用说明了抽象理论,数值结果验证了我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信